Journal Home > Volume 3 , Issue 7

Materials with emission over the whole visible range (400–800 nm) have been obtained through incorporating single-colored CdTe nanocrystals (NCs) into a poly(p-phenylene vinylene) (PPV) precursor [the sulfonium polyelectrolyte precursor of PPV]. Firstly, the quantum yield (QY) of the PPV precursor was improved to ~50% via heat treatment of a mixed solution of the PPV precursor and poly(vinyl alcohol) (PVA) at 100 ℃ for 3 min. Then, single-colored CdTe NCs were incorporated into the mixed solution. The introduction of the PVA was necessary to reduce the electrostatic interaction between the PPV precursor and CdTe NCs, which improved their compatibility. The reduced electrostatic interaction eliminated Förster resonance energy transfer (FRET) processes between NCs, as well as between NCs and the PPV precursor, which allowed the functional integration of the polymer and NCs. Consequently, polymer/NC composites with almost any Commission Internationale de L'Eclairage (CIE) coordinates can be achieved by simply changing the size and amount of the NCs. In particular, when the emission wavelength of the CdTe NCs was 559 nm, a pure white-light emitting material with CIE coordinates (0.337, 0.332) was obtained.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An Effective Method to Prepare Polymer/Nanocrystal Composites with Tunable Emission over the Whole Visible Light Range

Show Author's information Haotong Wei1Haizhu Sun1,2Hao Zhang1Cong Gao1Bai Yang1( )
State Key Laboratory of Supramolecular Structure and Materials College of Chemistry, Jilin UniversityChangchun 130012 China
College of Chemistry Northeast Normal UniversityChangchun 130024 China

Abstract

Materials with emission over the whole visible range (400–800 nm) have been obtained through incorporating single-colored CdTe nanocrystals (NCs) into a poly(p-phenylene vinylene) (PPV) precursor [the sulfonium polyelectrolyte precursor of PPV]. Firstly, the quantum yield (QY) of the PPV precursor was improved to ~50% via heat treatment of a mixed solution of the PPV precursor and poly(vinyl alcohol) (PVA) at 100 ℃ for 3 min. Then, single-colored CdTe NCs were incorporated into the mixed solution. The introduction of the PVA was necessary to reduce the electrostatic interaction between the PPV precursor and CdTe NCs, which improved their compatibility. The reduced electrostatic interaction eliminated Förster resonance energy transfer (FRET) processes between NCs, as well as between NCs and the PPV precursor, which allowed the functional integration of the polymer and NCs. Consequently, polymer/NC composites with almost any Commission Internationale de L'Eclairage (CIE) coordinates can be achieved by simply changing the size and amount of the NCs. In particular, when the emission wavelength of the CdTe NCs was 559 nm, a pure white-light emitting material with CIE coordinates (0.337, 0.332) was obtained.

Keywords: Nanocrystal, CdTe, poly(p-phenylene vinylene), poly(vinyl alcohol)

References(49)

1

Arakawa, Y.; Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl. Phys. Lett. 1982, 40, 939–941.

2

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

3

Klimov, V. I.; Mikhailovsky, A. A.; Xu, S.; Malko, A.; Hollingsworth, J. A.; Leatherdale, C. A.; Eisler, H. J.; Bawendi, M. G. Optical gain and stimulated emission in nanocrystal quantum dots. Science 2000, 290, 314–317.

4

Colvin, V. L.; Schlamp, M. C.; Allvlsatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994, 370, 354–357.

5

Xie, R. G.; Peng, X. G. Synthesis of Cu-doped InP nanocrystals (d-dots) with ZnSe diffusion barrier as efficient and color-tunable NIR emitters. J. Am. Chem. Soc. 2009, 131, 10645–10651.

6

Grieve, K.; Mulvaney, P.; Grieser, F. Synthesis and electronic properties of semiconductor nanoparticles/quantum dots. Curr. Opin. Colloid Interface Sci. 2000, 5, 168–172.

7

Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

8

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

9

Åkerman, M. E.; Chan, W. C. W.; Laakkonen, P.; Bhatia, S. N.; Ruoslahti, E. Nanocrystal targeting in vivo. Proc. Natl. Acad. Sci. USA 2002, 99, 12617–12621.

10

Qian, H. F.; Dong, C. Q.; Peng, J. L.; Qiu, X.; Xu, Y. H.; Ren, J. C. High-quality and water-soluble near-infrared photoluminescent CdHgTe/CdS quantum dots prepared by adjusting size and composition. J. Phys. Chem. C 2007, 111, 16852–16857.

11

Schroedter, A.; Weller, H. Ligand design and bioconjugation of colloidal gold nanoparticles. Angew. Chem. Int. Ed. 2002, 41, 3218–3221.

DOI
12

Russell, J. T.; Lin, Y.; Böker, A.; Su, L.; Carl, P.; Zettl, H.; He, J. B.; Still, K.; Tangirala, R.; Emrick, T.; Littrell, K.; Thiyagarajan, P.; Cookson, D.; Fery, A.; Wang, Q.; Russell, T. P. Self-assembly and cross-linking of bionanoparticles at liquid–liquid interfaces. Angew. Chem. Int. Ed. 2005, 44, 2420–2426.

13

Tang, Z. Y.; Zhang, Z. L.; Wang, Y. Glotzer, S. C.; Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274–278.

14

Zhang, H.; Cui, Z. C.; Wang, Y.; Zhang, K.; Ji, X. L.; Lü, C. L.; Yang, B.; Gao, M. Y. From water-soluble CdTe nanocrystals to fluorescent nanocrystal-polymer transparent composites using polymerizable surfactants. Adv. Mater. 2003, 15, 777–780.

15

Agrawal, M.; Rubio-Retama, J.; Zafeiropoulos, N. E.; Gaponik, N.; Gupta, S.; Cimrova, V.; Lesnyak, V.; López-Cabarcos, E.; Tzavalas, S.; Rojas-Reyna, R.; Eychmüller, A.; Stamm, M. Switchable photoluminescence of CdTe nanocrystals by temperature-responsive microgels. Langmuir 2008, 24, 9820–9824.

16

Wang, J. W.; Tanner, P. A. Upconversion for white light generation by a single compound. J. Am. Chem. Soc. 2010, 132, 947–949.

17

Carlos, L. D.; Sá Ferreira, R. A.; Pereira, R. N.; Assunção, M.; de ZeaBermudez, V. White-light emission of amine-functionalized organic/inorganic hybrids: Emitting centers and recombination mechanisms. J. Phys. Chem. B 2004, 108, 14924–14932.

18

Sorimachi, H.; Ohta, H.; Tanaka, K.; Uchiki, H. Optical properties of Sn-doped and Sn: Ce-codoped CaAl2S4 and application to white light emitting phosphor. Phys. Status Solidi C 2009, 6, 1145–1148.

19

Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. The first single polymer with simultaneous blue, green, and red emission for white electroluminescence. Adv. Mater. 2005, 17, 2974–2978.

20

Romero-Nieto, C.; Durben, S.; Kormos, I. M.; Baumgartner, T. Simple and efficient generation of white light emission from organophosphorus. building blocks. Adv. Funct. Mater. 2009, 19, 3625–3631.

21

Wang, R. B.; Peng, J.; Qiu, F.; Yang, Y. L.; Xie, Z. Y. Simultaneous blue, green, and red emission from diblock copolymer micellar films: A new approach to white-light emission. Chem. Commun. 2009, 6723–6725.

22

Park, S.; Kwon, J. E.; Kim, S. H.; Seo, J.; Chung, K.; Park, S. Y.; Jang, D. J.; Medina, B. M.; Gierschner, J.; Park, S. Y. A white-light-emitting molecule: Frustrated energy transfer between constituent emitting centers J. Am. Chem. Soc. 2009, 131, 14043–14049.

23

Chen, H. C.; Hung, C. Y.; Wang, K. H.; Chen, H. L.; Fann, W. S.; Chien, F. C.; Chen, P.; Chow, T. J.; Hsu, C. P.; Sun, S. S. White-light emission from an upconverted emission with an organic triplet sensitizer. Chem. Commun. 2009, 4064–4066.

24

Liu, J.; Zhou, Q. G.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Ma, D. G.; Jing, X. B.; Wang, F. S. White electroluminescence from a single-polymer system with simultaneous two-color emission: Polyfluorene as the blue host and a 2, 1, 3-benzothiadiazole derivative as the orange dopant on the main chain. Adv. Funct. Mater. 2006, 16, 957–965.

25

Sapra, S.; Mayilo, S.; Klar, T. A.; Rogach, A. L.; Feldmann, J. Bright white-light emission from semiconductor nanocrystals: By chance and by design. Adv. Mater. 2007, 19, 569–572.

26

Bowers, M. J. II; McBride, J. R.; Garrett, M. D.; Sammons, J. A.; Dukes, A. D. III; Schreuder, M. A.; Watt, T. L.; Lupini, A. R.; Pennycook, S. J.; Rosenthal, S. J. Structure and ultrafast dynamics of white-light-emitting CdSe nanocrystals. J. Am. Chem. Soc. 2009, 131, 5730–5731.

27

Kar, S.; Biswas, S. White light emission from surface-oxidized manganese-doped ZnS nanorods. J. Phys. Chem. C 2008, 112, 11144–11149.

28

Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539–541.

29

Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J. Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew. Chem. Int. Ed. 2003, 42, 3371–3375.

30

Bradley, D. D. C. Precursor-route poly(p-phenylenevinylene): Polymer characterisation and control of electronic properties. J. Phys D: Appl. Phys. 1987, 20, 1389–1410.

31

Shim, H. S.; Na, S. I.; Nam, S. H.; Ahn, H. J.; Kim, H. J.; Kim, D. Y.; Kim, W. B. Efficient photovoltaic device fashioned of highly aligned multilayers of electrospun TiO2 nanowire array with conjugated polymer. Appl. Phys. Lett. 2008, 92, 183107.

32

Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Cardone, A.; Martinelli, C.; Farinola, G. M.; Babudri, F. F.; Naso, B.; Büchel, M.; Bruno, G. Blue-gap poly(p-phenylene vinylene)s with fluorinated double bonds: Interplay between supramolecular organization and optical properties in thin films. Adv. Mater. , 2009, 21, 1115–1120.

33

Chang, W. P.; Whang, W. T. A study of the relationship between the electroluminescence characteristics and compositions of PPV-PVA-based polymers. Polymer, 1996, 37, 3493–3499.

34

He, G. F.; Li, Y. F.; Liu, J.; Yang, Y. Enhanced electroluminescence using polystyrene as a matrix. Appl. Phys. Lett. , 2002, 80, 4247–4249.

35

Vallée, R. A. L.; Cotlet, M.; Hofkens, J.; De Schryver, F. C. Spatially heterogeneous dynamics in polymer glasses at room temperature probed by single molecule lifetime fluctuations. Macromolecules 2003, 36, 7752–7758.

36

Ravi Kishore, V. V. N.; Kokane, S.; Narasimhan, K. L.; Periasamy, N. Time resolved photoluminescence spectra of PPV film: Heterogeneity and excited state relaxation. Chem. Phys. Lett. 2004, 386, 118–122.

37

Vijila, C.; Westerling, M.; Aarnio, H.; Österbacka, R.; Huang, C.; Chen, Z. K.; Zhang, X. H.; Zhu, F. R.; Jin, C. S. Nature and dynamics of photoexcited states in an electroluminescent poly(phenylene vinylene-co-fluorenylene vinylene)-based π-conjugated polymer. J. Photochem. Photobiol. A: Chem. 2008, 199, 358–362.

38

Colaneri, N. F.; Bradley, D. D. C.; Friend, R. H.; Burn, P. L.; Holmes, A. B.; Spangler, C. W. Photoexcited states in poly(p-phenylene vinylene): Comparison with trans, trans-distyrylbenzene, a model oligomer. Phys. Rev. B 1990, 42, 11670–11681.

39

Bjorklund, T. G.; Lim, S. H.; Bardeen, C. J. The optical spectroscopy of poly(p-phenylene vinylene)/polyvinyl alcohol blends: From aggregates to isolated chromophores. Synth. Met. 2004, 142, 195–200.

40

Jarzab, D.; Cordella, F.; Lenes, M.; Kooistra, F. B.; Blom, P. W. M.; Hummelen, J. C.; Loi, M. A. Charge transfer dynamics in polymer-fullerene blends for efficient solar cells. J. Phys. Chem. B 2009, 113, 16513–16517.

41

Edman, L.; Mets, Ü.; Rigler, R. Conformational transitions monitored for single molecules in solution. Proc. Natl. Acad. Sci. USA 1996, 93, 6710–6715.

42

Al Attar, H. A.; Monkman, A. P. Effect of surfactant on water-soluble conjugated polymer used in biosensor. J. Phys. Chem. B 2007, 111, 12418–12426.

43

Sun, H. Z.; Zhang, H.; Zhang, J. H.; Ning, Y.; Yao, T. J.; Bao, X.; Wang, C. L.; Li, M. J.; Yang, B. Effect of electrostatic interactions on the photophysical properties of the composites of CdTe nanocrystals and carbazole-containing polymers. J. Phys. Chem. C 2008, 112, 2317–2324.

44

Sun, H. Z.; Zhang, H.; Zhang, J. H.; Wei, H. T.; Ju, J.; Li, M. J.; Yang, B. White-light emission nanofibers obtained from assembling aqueous single-colored CdTe NCs into a PPV precursor and PVA matrix. J. Mater. Chem. 2009, 19, 6740–6744.

45

Müller, F.; Götzinger, S.; Gaponik, N.; Weller, H.; Mlynek, J.; Benson, O. Investigation of energy transfer between CdTe nanocrystals on polystyrene beads and dye molecules for FRET-SNOM applications. J. Phys. Chem. B 2004, 108, 14527–14534.

46

Willard, D. M.; Carillo, L. L.; Jung, J.; Orden, A. V. CdSe–ZnS quantum dots as resonance energy transfer donors in a model protein–protein binding assay. Nano Lett. 2001, 1, 469–474.

47

Sun, H. Z.; Zhang, J. H.; Zhang, H.; Xuan, Y.; Wang, C. L.; Li, M. J.; Tian, Y.; Ning, Y.; Ma, D. G.; Yang, B.; Wang, Z. Y. Pure white-light emission of nanocrystal–polymer composites. ChemPhysChem 2006, 7, 2492–2496.

48

Jiang, G. X.; Susha, A. S.; Lutich, A. A.; Stefani, F. D.; Feldmann, J.; Rogach, A. L. Cascaded FRET in conjugated polymer/quantum dot/dye-labeled DNA complexes for DNA hybridization detection. ACS Nano 2009, 3, 4127–4131.

49

Lee, J.; Kim, H. J.; Chen, T.; Lee, K.; Kim, K. S.; Glotzer, S. C.; Kim, J.; Kotov, N. A. Control of energy transfer to CdTe nanowires via conjugated polymer orientation. J. Phys. Chem. C 2009, 113, 109–116.

File
nr-3-7-496_ESM.pdf (239.4 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 April 2010
Revised: 18 May 2010
Accepted: 19 May 2010
Published: 12 June 2010
Issue date: July 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) (Nos. 20804008, 20974038, 50973039, and 20921003), National Program on Key Basic Research Project (973 Program) (Nos. 2007CB936402 and 2009CB939701), and the China Postdoctoral Science Foundation (No. 20090450139).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return