Journal Home > Volume 3 , Issue 7

We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface. Unique outer rings with concentric inner holed rings were observed. Further, an empirical equation to describe the size distribution of the outer rings in the holed nanostructures has been established. The contour line generated by the equation provides physical insights into quantum ring formation by droplets of group Ⅲ materials on Ⅲ–Ⅴ substrates.


menu
Abstract
Full text
Outline
About this article

Holed Nanostructures Formed by Aluminum Droplets on a GaAs Substrate

Show Author's information Alvason Zhenhua Li( )Zhiming M. Wang( )Jiang WuGregory J. Salamo
Institute of Nanoscale Science and Engineering University of Arkansas, FayettevilleArkansas 72701 USA

Abstract

We have studied the morphology evolution of holed nanostructures formed by aluminum droplet epitaxy on a GaAs surface. Unique outer rings with concentric inner holed rings were observed. Further, an empirical equation to describe the size distribution of the outer rings in the holed nanostructures has been established. The contour line generated by the equation provides physical insights into quantum ring formation by droplets of group Ⅲ materials on Ⅲ–Ⅴ substrates.

Keywords: GaAs, MBE, Droplet epitaxy, aluminum droplets, holed nanostructures

References(26)

1

García, J. M.; Medeiros-Ribeiro, G.; Schmidt, K.; Ngo, T.; Feng, J. L.; Lorke, A.; Kotthaus, J.; Petroff, P. M. Intermixing and shape changes during the formation of InAs self-assembled quantum dots. Appl. Phys. Lett. 1997, 71, 2014–2016.

2

Mlakar, T.; Biasiol, G.; Heun, S.; Sorba, L.; Vijaykumar, T.; Kulkarni, G. U.; Spreafico, V.; Prato, S. Conductive atomic force microscopy of InAs/GaAs quantum rings. Appl. Phys. Lett. 2008, 92, 192105-1-3.

3

Szafran, B. Correlated persistent currents in a stack of semiconductor quantum rings. Phys. Rev. B 2008, 77, 235314.

4

Dai, J. -H, Lee, J. -H.; Lin, Y. -L.; Lee, S. -C. In(Ga)As quantum rings for terahertz detectors. Jpn. J. Appl. Phys. 2008, 47, 2924–2926.

5

Bruno-Alfonso, A.; Latgé, A. Quantum rings of arbitrary shape and non-uniform width in a threading magnetic field. Phys. Rev. B 2008, 77, 205303-1-8.

6

Chi, F.; Li, S. -S. Spin-polarized transport through an Aharonov-Bohm interferometer with Rashba spin-orbit interaction. J. Appl. Phys. 2006, 100, 113703.

7

Fomin, V. M.; Gladilin, V. N.; Klimin, S. N.; Devreese, J. T.; Kleemans, N. A.; Koenraad, P. M. Theory of electron energy spectrum and Aharonov–Bohm effect in self-assembled InxGa1–xAs quantum rings in GaAs. Phys. Rev. B. 2007, 76, 235320.

8

Pomraenke, R.; Lienau, C.; Mazur, Y. I.; Wang, Z. M.; Liang, B.; Tarasov, G. G.; Salamo, G. Near-field optical spectroscopy of GaAs/AlyGa1–yAs quantum dot pairs grown by high-temperature droplet epitaxy. J. Phys. Rev. B. 2008, 77, 075314.

9

Belhadj, T.; Kuroda, T.; Simon, C. -M.; Amand, T.; Mano, T.; Sakoda, K.; Koguchi, N.; Marie, X.; Urbaszek, B. Optically monitored nuclear spin dynamics in individual GaAs quantum dots grown by droplet epitaxy. Phys. Rev. B. 2008, 78, 205325.

10

Koguchi, N.; Ishige, K. Growth of GaAs epitaxial microcrystals on an s-terminated GaAs substrate by successive irradiation of Ga and As molecular-beams. Jpn. J. Appl. Phys. 1993, 32, 2052–2058.

11

Sablon, K. A.; Wang, Z. M.; Salamo, G. J. Composite droplets: Evolution of InGa and AlGa alloys on GaAs(100). Nanotechnology 2008, 19, 125609.

12

Kim, J. S.; Jeong, M. S.; Byeon, C. C.; Ko, D. K.; Lee, J.; Kim, J. S.; Koguchi, N. GaAs quantum dots with a high density on a GaAs (111)A substrate. Appl. Phys. Lett. 2006, 88, 241911.

13

Heyn, C.; Stemmann, A.; Schramm, A.; Welsch, H.; Hansen, W.; Nemcsics, Á. Regimes of GaAs quantum dot self-assembly by droplet epitaxy. Phys. Rev. B. 2007, 76, 075317.

14

Pankaow, N.; Panyakeow, S.; Ratanathammaphan, S. Formation of In0.5Ga0.5As ring-and-hole structure by droplet molecular beam epitaxy. J. Crystal Growth 2009, 311, 1832–1835.

15

Zhao, C.; Chen, Y. H.; Xu, B.; Tang, C. G.; Wang, Z. G.; Ding, F. Study of the wetting layer of InAs/GaAs nanorings grown by droplet epitaxy. Appl. Phys. Lett. 2008, 92, 063122.

16

Tong, C. Z.; Yoon, S. F. Investigation of the fabrication mechanism of self-assembled GaAs quantum rings grown by droplet epitaxy. Nanotechnology 2008, 19, 365604.

17

Somaschini, C.; Bietti, S.; Koguchi, N.; Sanguinetti, S. Fabrication of multiple concentric nanoring structures. Nano Lett. 2009, 9, 3419–3424.

18

Stemmann, A.; Heyn, C.; Köppen, T.; Kipp, T.; Hansen, W. Local droplet etching of nanoholes and rings on GaAs and AlGaAs surfaces. Appl. Phys. Lett. 2008, 93, 123108.

19

Heyn, C.; Stemmann, A.; Hansen, W. Dynamics of self-assembled droplet etching. Appl. Phys. Lett. 2009, 95, 173110.

20

Li, A. Z.; Wang, Z. M.; Wu, J.; Xie, Y.; Sablon, K. A.; Salamo, G. J. Evolution of holed nanostructures on GaAs (001). Cryst. Growth Des. 2009, 9, 2941–2943.

21

Wang, Z. M.; Liang, B. L.; Sablon, K. A.; Salamo, G. J. Nanoholes fabricated by self-assembled gallium nanodrill on GaAs(100). Appl. Phys. Lett. 2007, 90, 113120.

22

Liang, B. L.; Wang, Z. M.; Lee, J. H.; Sablon, K.; Mazur, Y. I.; Salamo, G. J. Low density InAs quantum dots grown on GaAs nanoholes. Appl. Phys. Lett. 2006, 89, 043113.

23

Alonso-Gonzalez, P.; Alen, B.; Fuster, D.; Gonzalez, Y.; Gonzalez, L.; Martinez-Pastor. Formation and optical characterization of single InAs quantum dots grown on GaAs nanoholes. J. Appl. Phys. Lett. 2007, 91, 163104.

24

Alonso-González, P.; Fuster, D.; González, L.; Martín-Sánchez, J.; González, Y. Low density InAs quantum dots with control in energy emission and top surface location. Appl. Phys. Lett. 2008, 93, 183106.

25

Heyn, C.; Stemmann, A.; Köppen, T.; Strelow, C.; Kipp, T.; Grave, M.; Mendach, S.; Hansen, W. Highly uniform and strain-free GaAs quantum dots fabricated by filling of self-assembled nanoholes. Appl. Phys. Lett. 2009, 94, 183113.

26

Li, X. L.; Yang, G. W. Growth mechanisms of quantum ring self-assembly upon droplet epitaxy. J. Phys. Chem. C 2008, 112, 7693–7697.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 April 2010
Revised: 05 May 2010
Accepted: 12 May 2010
Published: 16 June 2010
Issue date: July 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support by the MRSEC Program of NSF Grant (DMR-0520550). The valuable comments of Tim Morgan are gratefully acknowledged.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return