Journal Home > Volume 3 , Issue 6

Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70–80 F·g−1 at 0.1 A·g−1) and cycling stability (negligible decay after 35, 000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices.


menu
Abstract
Full text
Outline
About this article

Aqueous Supercapacitors on Conductive Cotton

Show Author's information Mauro Pasta1,2Fabio La Mantia2Liangbing Hu2Heather Dawn Deshazer2Yi Cui2( )
Dipartimento di Chimica Inorganica, Metallorganica e Analitica "Lamberto Malatesta"Università degli Studi di MilanoVia Venezian 2120133 MilanoItaly
Department of Materials Science and EngineeringStanford UniversityStanford, CA94305USA

Abstract

Wearable electronics offer the combined advantages of both electronics and fabrics. In this article, we report the fabrication of wearable supercapacitors using cotton fabric as an essential component. Carbon nanotubes are conformally coated onto the cotton fibers, leading to a highly electrically conductive interconnecting network. The porous carbon nanotube coating functions as both active material and current collector in the supercapacitor. Aqueous lithium sulfate is used as the electrolyte in the devices, because it presents no safety concerns for human use. The supercapacitor shows high specific capacitance (~70–80 F·g−1 at 0.1 A·g−1) and cycling stability (negligible decay after 35, 000 cycles). The extremely simple design and fabrication process make it applicable for providing power in practical electronic devices.

Keywords: carbon nanotubes, energy storage, Supercapacitor, wearable electronics

References(17)

1

Gniotek, K.; Krucińska, I. The basic problems of textronics. Fibres Text. East. Eur. 2004, 12, 13–16.

2

Lukowicz, P.; Kirstein, T.; Troster, G. Wearable systems for health care applications. Method. Inform. Med. 2004, 43, 232–238.

3

Park, S.; Jayaraman, S. Smart textiles: Wearable electronic systems. MRS Bull. 2003, 28, 585–591.

4

Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H. D.; Choi, J. W.; Han, S. M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714.

5

Hertel, T.; Walkup, R. E.; Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870–13873.

6

An, K. H.; Kim, W. S.; Park, Y. S.; Choi, Y. C.; Lee, S. M.; Chung, D. C.; Bae, D. J.; Lim, S. C.; Lee, Y. H. Super-capacitors using single-walled carbon nanotube electrodes. Adv. Mater. 2001, 13, 497–500.

DOI
7

Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J. Structural flexibility of carbon nanotubes. J. Chem. Phys. 1996, 104, 2089–2092.

8

Yu, X.; Lin, B.; Gong, B.; Lin, J.; Wang, R.; Wei, K. Effect of nitric acid treatment on carbon nanotubes (CNTs)-cordierite monoliths supported ruthenium catalysts for ammonia synthesis. Catal. Lett. 2008, 124, 168–173.

9

Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, T.; Hiraga, K.; Nisshina, Y. Purifying single-walled nanotubes. Nature 1996, 383, 679.

10

Parekh, B. B.; Fanchini, G.; Eda, G.; Chhowalla, M. Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization. Appl. Phys. Lett. 2007, 90, 121913.

11

Zhou, W.; Vavro, J.; Nemes, N. M.; Fischer, J. E.; Borondics, F.; Kamaras, K.; Tanner, D. B. Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes. Phys. Rev. B 2005, 71, 205423.

12

Beaudrouet, E.; Le Gal La Salle, A.; Guyomard, D. Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials. Electrochim. Acta 2009, 54, 1240–1248.

13

Prosini, P. P.; Pozio, A.; Botti, S.; Ciardi, R. Electrochemical studies of hydrogen evolution, storage and oxidation on carbon nanotube electrodes. J. Power Sources 2003, 118, 265–269.

14

Newman, J. S.; Tobias, C. W. J Theoretical analysis of current distribution in porous electrodes. Electrochem. Soc. 1962, 109, 1183–1191.

15

de Levie, R. Porous electrodes in electrolyte solutions. IV. Electrochim. Acta 1964, 9, 1231.

16

Ng, S. H.; La Mantia, F.; Novak, P. A multiple working electrode for electrochemical cells: A tool for current density distribution studies. Angew. Chem. Int. Ed. 2009, 48, 528–532.

17

Daniel-Bek, V. S. Polarization of porous electrodes. I. Distribution of current and potential within an electrode. Zh. Fiz. Khim. 1948, 22, 697–710.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 March 2010
Revised: 27 April 2010
Accepted: 04 May 2010
Published: 01 June 2010
Issue date: June 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

Y. C. acknowledges support from the King Abdullah University of Science and Technology (KAUST) Investigator Award (No. KUS-l1-001-12).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return