Journal Home > Volume 3 , Issue 7

The adsorption of 2, 6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 ℃. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions and that kinetic factors play an important role.


menu
Abstract
Full text
Outline
About this article

Interplay of Adsorbate-Adsorbate and Adsorbate-Substrate Interactions in Self-Assembled Molecular Surface Nanostructures

Show Author's information Joachim Schnadt1,2( )Wei Xu1,3Ronnie T. Vang1Jan Knudsen1Zheshen Li4Erik Lægsgaard1Flemming Besenbacher1
Interdisciplinary Nanoscience Center, iNANO, and Department of Physics and Astronomy Aarhus University, Building 1521Ny Munkegade 8000 Aarhus C Denmark
Division of Synchrotron Radiation Research Department of Physics, Lund University Box 118, 221 00 Lund Sweden
Shanghai Key Laboratory for Metallic Functional Materials, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education) College of Materials Science and Engineering, Tongji University, 1239 Si Ping RoadShanghai 200092 China
Institute for Storage Ring Facilities Aarhus University, Building 1525Ny Munkegade 8000 Aarhus C Denmark

Abstract

The adsorption of 2, 6-naphthalenedicarboxylic acid (NDCA) molecules on the Ag(110), Cu(110), and Ag(111) surfaces at room temperature has been studied by means of scanning tunnelling microscopy (STM). Further supporting results were obtained using X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS). On the Ag(110) support, which had an average terrace width of only 15 nm, the NDCA molecules form extended one-dimensional (1-D) assemblies, which are oriented perpendicular to the step edges and have lengths of several hundred nanometres. This shows that the assemblies have a large tolerance to monatomic surface steps on the Ag(110) surface. The observed behaviour is explained in terms of strong intermolecular hydrogen bonding and a strong surface-mediated directionality, assisted by a sufficient degree of molecular backbone flexibility. In contrast, the same kind of step-edge crossing is not observed when the molecules are adsorbed on the isotropic Ag(111) or more reactive Cu(110) surfaces. On Ag(111), similar 1-D assemblies are formed to those on Ag(110), but they are oriented along the step edges. On Cu(110), the carboxylic groups of NDCA are deprotonated and form covalent bonds to the surface, a situation which is also achieved on Ag(110) by annealing to 200 ℃. These results show that the formation of particular self-assembled molecular nanostructures depends significantly on a subtle balance between the adsorbate-adsorbate and adsorbate-substrate interactions and that kinetic factors play an important role.

Keywords: hydrogen bonding, X-ray photoelectron spectroscopy, scanning tunnelling microscopy, Molecular self-assembly

References(46)

1

Lehn, J. M. Toward self-organization of complex matter. Science 2002, 295, 2400-2403.

2

Ariga, K.; Kunitake, T. Supramolecular Chemistry—Fundamentals and Applications; Springer: Berlin, 2006.

3

Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671-679.

4

Stepanow, S.; Lin, N.; Barth, J. V. Modular assembly of low-dimensional coordination architectures on metal surfaces. J. Phys. : Condens. Matter 2008, 20, 184002.

5

Barth, J. V. Molecular architectonic on metal surfaces. Annu. Rev. Phys. Chem. 2007, 58, 375-407.

6

Fichou, D. Structural order in conjugated oligothiophenes and its implications on opto-electronic devices. J. Mater. Chem. 2000, 10, 571-588.

7

Barlow, S. M.; Raval, R. Complex organic molecules at metal surfaces: Bonding, organisation and chirality. Surf. Sci. Rep. 2003, 50, 201-341.

8

Rosei, F.; Schunack, M.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Properties of large organic molecules on metal surfaces. Prog. Surf. Sci. 2003, 71, 95-146.

9

Cicoira, F.; Santato, C.; Rosei, F. Two-dimensional nanotemplates as surface cues for the controlled assembly of organic molecules. Top. Curr. Chem. 2008, 285, 203-267.

10

Samorì, P. Exploring supramolecular interactions and architectures by scanning force microscopies. Chem. Soc. Rev. 2005, 34, 551-561.

11

Liang, H.; He, Y.; Ye, Y. C.; Xu, X. G.; Cheng, F.; Sun, W.; Shao, X.; Wang, Y. F.; Li, J. L.; Wu, K. Two-dimensional molecular porous networks constructed by surface assembling. Coord. Chem. Rev. 2009, 253, 2959-2979.

12

Bonifazi, D.; Mohnani, S.; Llanes-Pallas, A. Supramolecular chemistry at interfaces: Molecular recognition on nano-patterned porous surfaces. Chem. Eur. J. 2009, 15, 7004-7025.

13

Vang, R. T.; Lægsgaard, E.; Besenbacher, F. Bridging the pressure gap in model systems for heterogeneous catalysis with high-pressure scanning tunneling microscopy. Phys. Chem. Chem. Phys. 2007, 9, 3460-3469.

14

Vattuone, L.; Savio, L.; Rocca, M. Bridging the structure gap: Chemistry of nanostructured surfaces at well-defined defects. Surf. Sci. Rep. 2008, 63, 101-168.

15

Freund, H. -J.; Bäumer, M.; Libuda, J.; Risse, T.; Rupprechter, G.; Shaikhutdinov, S. Preparation and characterization of model catalysts: From ultrahigh vacuum to in situ conditions at the atomic dimension. J. Catal. 2003, 216, 223-235.

16

Schnadt, J.; Rauls, E.; Xu, W.; Vang, R. T.; Knudsen, J.; Lægsgaard, E.; Li, Z.; Hammer, B.; Besenbacher, F. Extended one-dimensional supramolecular assembly on a stepped surface. Phys. Rev. Lett. 2008, 100, 046103.

17

Besenbacher, F. Scanning tunnelling microscopy studies of metal surfaces. Rep. Prog. Phys. 1996, 59, 1737-1802.

18

Uggerhøj, E. The Aarhus storage ring—A research facility for physics, chemistry, medicine, and materials sciences. Nucl. Instrum. Meth. Phys. Res. B 1995, 99, 261-266.

19

McQuaide, B. H.; Banna, M. S. The core binding energies of some gaseous aromatic carboxylic acids and their relationship to proton affinities and gas phase acidities. Can. J. Chem. 1988, 66, 1919-1922.

20

Patthey, L.; Rensmo, H.; Persson, P.; Westermark, K.; Vayssieres, L.; Stashans, A.; Petersson, Å.; Brühwiler, P. A.; Siegbahn, H.; Lunell, S.; Mårtensson, N. Adsorption of bi-isonicotinic acid on rutile TiO2(110). J. Chem. Phys. 1999, 110, 5913-5918.

21

Aplincourt, P.; Bureau, C.; Anthoine, J. -L.; Chong, D. P. Accurate density functional calculations of core electron binding energies on hydrogen-bonded systems. J. Phys. Chem. A 2001, 105, 7364-7370.

22

Schnadt, J.; O'Shea, J. N.; Patthey, L.; Schiessling, J.; Krempaský, J.; Shi, M.; Mårtensson, N.; Brühwiler, P. A. Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(110) II: XPS. Surf. Sci. 2003, 544, 74-86.

23

O'Shea, J. N.; Schnadt, J.; Brühwiler, P. A.; Hillesheimer, H.; Mårtensson, N.; Patthey, L.; Krempaský, J.; Wang, C. K.; Luo, Y.; Ågren, H. Hydrogen-bond induced surface core-level shift in isonicotinic acid. J. Phys. Chem. B 2001, 105, 1917-1920.

24

O'Shea, J. N.; Luo, Y.; Schnadt, J.; Patthey, L.; Hillesheimer, H.; Krempaský, J.; Nordlund, D.; Nagasano, M.; Brühwiler, P. A.; Mårtensson, N. Hydrogen-bond induced surface core-level shift in pyridine carboxylic acids. Surf. Sci. 2001, 486, 157-166.

25

Tabayahi, K.; Yamamoto, K.; Takahashi, O.; Tamenori, Y.; Harries, J. R.; Gejo, T.; Iseda, M.; Tamura, T.; Honma, K.; Suzuki, I. H.; Nagaoka, S.; Ibuki, T. Inner-shell excitation spectroscopy and fragmentation of small hydrogen-bonded clusters of formic acid after core excitations at the oxygen K edge. J. Chem. Phys. 2006, 125, 194307.

26

Takahashi, O.; Yamanouchi, S.; Yamamoto, K.; Tabayashi, K. Theoretical study of the X-ray absorption spectra of small formic acid clusters. Chem. Phys. Lett. 2006, 419, 501-505.

27

Minkov, I.; Gel'mukhanov, F.; Friedlein, R.; Osikowicz, W.; Suess, C.; Öhrwall, G.; Sorensen, S. L.; Braun, S.; Murdey, R.; Salaneck, W. R.; Ågren, H. Core excitations of naphthalene: Vibrational structure versus chemical shifts. J. Chem. Phys. 2004, 121, 5733-5739.

28

Schnadt, J.; Schiessling, J.; O'Shea, J. N.; Gray, S. M.; Patthey, L.; Johansson, M. K. -J.; Shi, M.; Krempaský, J.; Åhlund, J.; Karlsson, P. G.; Persson, P.; Mårtensson, N.; Brühwiler, P. A. Structural study of adsorption of isonicotinic acid and related molecules on rutile TiO2(110) I: XAS and STM. Surf. Sci. 2003, 540, 39-54.

29

Kaduk, J. A.; Golab, J. T. Structures of 2, 6-disubstituted naphthalenes. Acta Crystallogr. B 1999, 55, 85-94.

30

Atodiresei, N.; Caciuc, V.; Franke, J. -H.; Blügel, S. Role of the van der Waals interactions on the bonding mechanism of pyridine on Cu(110) and Ag(110) surface: First-principles study. Phys. Rev. B 2008, 78, 045411.

31

Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, 1997; p. 12.

32

Tan, X.; Yang, G. W. Supramolecular nanowires self-assembly on stepped Ag(110) surface. J. Phys. Chem. C 2009, 113, 19926-19929.

33

Pai, W. W.; Bartelt, N. C.; Peng, M. R.; Reutt-Robey, J. E. Steps as adatom sources for surface chemistry: oxygen overlayer formation on Ag(110). Surf. Sci. 1995, 330, L679-L685.

34

Zambelli, T.; Barth, J. V.; Wintterlin, J. Formation mechanism of the O-induced added-row reconstruction on Ag(110): A low-temperature STM study. Phys. Rev. B 1998, 58, 12663-12666.

35

Barth, J. V.; Weckesser, J.; Lin, N.; Dmitriev, A.; Kern, K. Supramolecular architectures and nanostructures at metal surfaces. Appl. Phys. A 2003, 76, 645-652.

36

Lin, N.; Dmitriev, A.; Weckesser, J.; Barth, J. V.; Kern, K. Real-time single-molecule imaging of the formation and dynamics of coordination compounds. Angew. Chem. Int. Ed. 2002, 41, 4779-4783.

37

Chen, Q.; Perry, C. C.; Frederick, B. G.; Murray, P. W.; Haq, S.; Richardson, N. V. Structural aspects of the low-temperature deprotonation of benzoic acid on Cu(110) surfaces. Surf. Sci. 2000, 446, 63-75.

38

Dougherty, D. B.; Maksymovych, P.; Yates, J. T. Direct STM evidence for Cu-benzoate surface complexes on Cu(110). Surf. Sci. 2006, 600, 4484-4491.

39

Perry, C. C.; Haq, S.; Frederick, B. G.; Richardson, N. V. Face specificity and the role of metal adatoms in molecular reorientation at surfaces. Surf. Sci. 1998, 409, 512-520.

40

Classen, T.; Lingenfelder, M.; Wang, Y.; Chopra, R.; Virojanadara, C.; Starke, U.; Costantini, G.; Fratesi, G.; Fabris, S.; de Gironcoli, S.; Baroni, S.; Haq, S.; Raval, R.; Kern, K. Hydrogen and coordination bonding supramolecular structures of trimesic acid on Cu(110). J. Phys. Chem. A 2007, 111, 12589-12603.

41

Puschmann, A.; Haase, J.; Crapper, M. D.; Riley, C. E.; Woodruff, D. P. Structure determination of the formate intermediate on Cu(110) by use of X-ray absorption fine-structure measurements. Phys. Rev. Lett. 1985, 54, 2250-2252.

42

Pascal, M.; Lamont, C. L. A; Kittel, M.; Hoeft, J. T.; Terborg, R.; Polcik, M.; Kang, J. H.; Toomes, R.; Woodruff, D. P. Quantitative structural determination of the high coverage phase of the benzoate species on Cu(110). Surf. Sci. 2001, 492, 285-293.

43

Gomes, J. R. B.; Gomes, J. A. N. F. Adsorption of the formate species on copper surfaces: A DFT study. Surf. Sci. 1999, 432, 279-290.

44

Casarin, M.; Maccato, C.; Vittadini, A. LCAO-LDA study of the chemisorption of formate on Cu(110) and Ag(110) surfaces. J. Chem. Soc., Faraday Trans. 1998, 94, 797-804.

45

Lennartz, M. C.; Atodiresei, N.; Müller-Meskamp, L. M.; Karthäuser, S.; Waser, R.; Blügel, S. Cu-adatom-mediated bonding in close-packed benzoate/Cu(110) systems. Langmuir 2009, 25, 856-864.

46

Montoya, A.; Haynes, B. S. DFT analysis of the reaction paths of formaldehyde decomposition on silver. J. Phys. Chem. A 2009, 113, 8125-8131.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 February 2010
Revised: 29 April 2010
Accepted: 29 April 2010
Published: 01 June 2010
Issue date: July 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

Eva Rauls is acknowledged for discussions and for providing the drawings of the NDCA molecules in Figs. 1 and 2. J. S. acknowledges funding from the European Commission through a Marie Curie Intra-European Fellowship. Funding from the Swedish Research Council (VR) is gratefully acknowledged.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return