Journal Home > Volume 3 , Issue 6

We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as-grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of metallic-single-walled nanotube (SWNT) shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to 10 μm.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Theoretical and Experimental Studies of Schottky Diodes that Use Aligned Arrays of Single-Walled Carbon Nanotubes

Show Author's information Xinning Ho1,§Lina Ye1,2,§Slava V. Rotkin3,§( )Xu Xie1Frank Du1Simon Dunham1Jana Zaumseil4John A. Rogers1,5,6( )
Department of Materials Science and Engineering, Beckman Institute, and Frederick Seitz Materials Research LaboratoryUniversity of Illinois at Urbana-Champaign, 1304 West Green Street, UrbanaIllinois61801USA
Department of ChemistryUniversity of Science and Technology of ChinaHefei230026China
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 and Centre for Advanced Materials and NanotechnologyLehigh University, BethlehemPennsylvania18015USA
Center for Nanoscale MaterialsArgonne National LaboratoryArgonne, Illinois60439USA
Department of ChemistryUniversity of Illinois at Urbana-ChampaignUrbana, Illinois61801USA
Department of Electrical and Computer Engineering, Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbana, Illinois61801USA

§These authors contributed equally to this work

Abstract

We present theoretical and experimental studies of Schottky diodes that use aligned arrays of single-walled carbon nanotubes. A simple physical model, taking into account the basic physics of current rectification, can adequately describe the single-tube and array devices. We show that for as-grown array diodes, the rectification ratio, defined by the maximum-to-minimum-current-ratio, is low due to the presence of metallic-single-walled nanotube (SWNT) shunts. These tubes can be eliminated in a single voltage sweep resulting in a high rectification array device. Further analysis also shows that the channel resistance, and not the intrinsic nanotube diode properties, limits the rectification in devices with channel length up to 10 μm.

Keywords: single-walled carbon nanotubes, aligned arrays, Schottky diodes

References(33)

1

Schottky, W. Vereinfachte und erweiterte Theorie der Randschicht-gleichrichter. Z. Phys. 1942, 118, 539–592.

2

Shockley, W. The theory of p–n junctions in semiconductors in p–n junction transistors. Bell Syst. Tech. J. 1949, 28, 435–489.

3

Huang, Y. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 2001, 409, 66–69.

4

Low, T.; Hong, S.; Appenzeller, J.; Datta, S.; Lundstrom, M. Conductance asymmetry of graphene p–n junction. IEEE Trans. Electron. Dev. 2009, 56, 1292–1299.

5

Abdula, D.; Shim, M. Performance and photovoltaic response of polymer-doped carbon nanotube p–n junction. ACS Nano 2008, 2, 2154–2159.

6

Lee, J. U.; Gipp, P. P.; Heller, C. M. Carbon nanotube p–n junction diodes. Appl. Phys. Lett. 2004, 85, 145–147.

7

Zhou, C. W.; Kong, J.; Yenilmez, E.; Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 2000, 290, 1552–1555.

8

Bosnick, K.; Gabor, N.; McEuen, P. Transport in carbon nanotube p–i–n diodes. Appl. Phys. Lett. 2006, 89, 163121.

9

Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. Relation between conduction property and work function of contact metal in carbon nanotube field-effect transistors. Nanotechnology 2006, 17, 3412–3415.

10

Cobas, E.; Fuhrer, M. S. Microwave rectification by a carbon nanotube Schottky diode. Appl. Phys. Lett. 2008, 93, 043120.

11

Manohara, H. M.; Wong, E. R.; Schlecht, E.; Hunt, B. D.; Siegel, P. H. Carbon nanotube Schottky diodes using Ti-Schottky and Pt-Ohmic contacts for high frequency applications. Nano Lett. 2005, 5, 1469–1474.

12

Wang, S.; Zhang, L.; Zhang, Z. Y.; Ding, L.; Zeng, Q. S.; Wang, Z. X.; Liang, X. L.; Gao, M.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. Photovoltaic effects in asymetrically contacted CNT barrier free bipolar diode. J. Phys. Chem. C 2009, 113, 6891–6893.

13

Wang, S.; Zhang, Z. Y.; Ding, L.; Liang, X. L.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y.; Peng, L. M. A doping free carbon nanotube CMOS inverter-based bipolar diode and ambipolar transistor. Adv. Mater. 2008, 20, 3258–3262.

14

Perello, D.; Bae, D. J.; Kim, M. J.; Cha, D.; Jeong, S. Y.; Kang, B. R.; Yu, W. J.; Lee, Y. H.; Yun, M. Quantitative experimental analysis of Schottky barriers and Poole–Frenkel emission in carbon nanotube devices. IEEE Trans. Nanotechnol. 2009, 8, 355–360.

15

Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; Banks, T.; Feng, M.; Rotkin, S. V.; Rogers, J. A. High frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

16

Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. USA 2008, 105, 1405–1409.

17

Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H.; Adam, J. D.; Kocabas, C.; Banks, T.; Rogers, J. A. A 500 MHz carbon nanotube transistor oscillator. Appl. Phys. Lett. 2008, 93, 123506.

18

Amlani, L.; Lewis, J.; Lee, K.; Zhang, R.; Deng, J.; Wong, H. S. P. First demonstration of AC gain from a single walled carbon nanotube common-source amplifier, IEEE International Electron Devices Meeting, San Francisco, USA, 2006, 1-2, 559–562.

19

Sze, S. M. Semiconductor Devices, Physics and Technology (2nd Edition); John Wiley and Sons, Inc. : USA, 2002.

20

Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of higher coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540–4541.

21

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High performance electronics using dense, perfectly aligned arrays of single walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

22

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

23

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D. W.; Gordon, R. G.; Lundstrom, M.; Dai, H. J. Carbon nanotube field-effect transistors with integrated Ohmic contacts and high-κ gate dielectrics. Nano Lett. 2004, 4, 447–450.

24

Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Appl. Phys. Lett. 2005, 87, 173101.

25

Nosho, Y.; Ohno, Y.; Kishimoto, S.; Mizutani, T. n-Type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes. Appl. Phys. Lett. 2005, 86, 073105.

26

Lee, J. U. Photovoltaic effect in ideal carbon nanotube diodes. Appl. Phys. Lett. 2005, 87, 073101.

27

Wolfram, S. Mathematica 7.0; Wolfram Research: Champaign, IL, USA, 2008.

28

Banwell, T. C.; Jayakumar, A. Exact analytical solution for current flow through diode with series resistance. Electron. Lett. 2000, 36, 291–292.

29

Ho, X. N.; Ye, L.; Rotkin, S. V.; Cao, Q.; Unarunotai, S.; Salamat, S.; Alam, M. A.; Rogers, J. A. Scaling properties in transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2010, 10, 499–503.

30

Zhang, Z. Y.; Yao, K.; Liu, Y.; Jin, C. H.; Liang, X. L.; Chen, Q.; Peng, L. M. Quantitative analysis of current–voltage characteristics of semiconducting nanowires: Decoupling of contact effects. Adv. Funct. Mater. 2007, 17, 2478–2489.

31

Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082–6085.

32

Yaish, Y.; Park, J. Y.; Rosenblatt, S.; Sazonova, V.; Brink, M.; McEuen, P. L. Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys. Rev. Lett. 2004, 92, 046401.

33

Zhou, X. J.; Park, J. Y.; Huang, S. M.; Liu, J.; McEuen, P. L. Band structure, phonon scattering and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 2005, 95, 146805.

File
nr-3-6-444_ESM.pdf (729.4 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 February 2010
Revised: 01 April 2010
Accepted: 29 April 2010
Published: 01 June 2010
Issue date: June 2010

Copyright

© The Author(s) 2010

Acknowledgements

Acknowledgements

We thank T. Banks and B. Sankaran for help with processing. This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Facilities, University of Illinois, which are partially supported by the U.S. Department of Energy under Grants Nos. DE-FG02-07ER46453 and DE-FG02-07ER46471. X. H. acknowledges fellowship support from A*STAR (Singapore).

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Return