Journal Home > Volume 2 , Issue 12

Au nanoparticles epitaxially grown on Fe3O4 in Au (6.7 nm)-Fe3O4 dumbbell nanoparticles exhibit excellent stability against sintering, but display negligible catalytic activity in CO oxidation. Starting from various supported Au (6.7 nm)-Fe3O4 catalysts prepared by the colloidal deposition method, we have unambiguously identified the significance of the Au-TiO2 interface in CO oxidation, without any possible size effect of Au. In situ thermal decomposition of TiO2 precursors on Au-Fe3O4 was found to be an effective way to increase the Au-TiO2 interface and thereby optimize the catalytic performance of TiO2-supported Au-Fe3O4 dumbbell nanoparticles. By reducing the size of Fe3O4 from 15.2 to 4.9 nm, the Au-TiO2 contact was further increased so that the resulting TiO2-supported Au (6.7 nm)-Fe3O4 (4.9 nm) dumbbell particles become highly efficient catalysts for CO oxidation at room temperature.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial Activation of Catalytically Inert Au (6.7 nm)-Fe3O4 Dumbbell Nanoparticles for CO Oxidation

Show Author's information Binghui Wu§Hai Zhang§Cheng ChenShuichao LinNanfeng Zheng( )
State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China

§These authors contributed equally to this work.

Abstract

Au nanoparticles epitaxially grown on Fe3O4 in Au (6.7 nm)-Fe3O4 dumbbell nanoparticles exhibit excellent stability against sintering, but display negligible catalytic activity in CO oxidation. Starting from various supported Au (6.7 nm)-Fe3O4 catalysts prepared by the colloidal deposition method, we have unambiguously identified the significance of the Au-TiO2 interface in CO oxidation, without any possible size effect of Au. In situ thermal decomposition of TiO2 precursors on Au-Fe3O4 was found to be an effective way to increase the Au-TiO2 interface and thereby optimize the catalytic performance of TiO2-supported Au-Fe3O4 dumbbell nanoparticles. By reducing the size of Fe3O4 from 15.2 to 4.9 nm, the Au-TiO2 contact was further increased so that the resulting TiO2-supported Au (6.7 nm)-Fe3O4 (4.9 nm) dumbbell particles become highly efficient catalysts for CO oxidation at room temperature.

Keywords: CO oxidation, Gold nanocatalysts, support effect, Au-Fe3O4, dumbbell nanoparticles

References(29)

1

Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002, 6, 102-115.

2

Haruta, M. When gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75-87.

3

Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 2004, 37, 27-36.

4

Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. -Sci. Eng. 1999, 41, 319-388.

5

Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252-255.

6

Hughes, M. D.; Xu, Y. J.; Jenkins, P.; McMorn, P.; Landon, P.; Enache, D. I.; Carley, A. F.; Attard, G. A.; Hutchings, G. J.; King, F. et al. Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437, 1132-1135.

7

Hashmi, A. S. K.; Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 2006, 45, 7896-7936.

8

Corma, A.; Garcia, H. Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 2008, 37, 2096-2126.

9

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-334.

10

Grirrane, A.; Corma, A.; Garcia, H. Gold-catalyzed synthesis of aromatic azo compounds from anilines and nitroaromatics. Science 2008, 322, 1661-1664.

11

Turner, M.; Golovko, V. B.; Vaughan, O. P. H.; Abdulkin, P.; Berenguer-Murcia, A.; Tikhov, M. S.; Johnson, B. F. G.; Lambert, R. M. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 2008, 454, 981-983.

12

Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 ℃. Chem. Lett. 1987, 16, 405-408.

13

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301-309.

14

Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153-166.

15

Ma, Z.; Overbury, S. H.; Dai, S. Au/MxOy/TiO2 catalysts for CO oxidation: Promotional effect of main-group, transition, and rare-earth metal oxide additives. J. Mol. Catal. A-Chem. 2007, 273, 186-197.

16

Comotti, M.; Li, W. C.; Spliethoff, B.; Schuth, F. Support effect in high activity gold catalysts for CO oxidation. J. Am. Chem. Soc. 2006, 128, 917-924.

17

Iizuka, Y.; Tode, T.; Takao, T.; Yatsu, K.; Takeuchi, T.; Tsubota, S.; Haruta, M. A kinetic and adsorption study of CO oxidation over unsupported fine gold powder and over gold supported on titanium dioxide. J. Catal. 1999, 187, 50-58.

18

Schwartz, V.; Mullins, D. R.; Yan, W. F.; Chen, B.; Dai, S.; Overbury, S. H. XAS study of Au supported on TiO2: Influence of oxidation state and particle size on catalytic activity. J. Phys. Chem. B 2004, 108, 15782-15790.

19

Beck, A.; Horvath, A.; Stefler, G.; Scurrell, M. S.; Guczi, L. Role of preparation techniques in the activity of Au/TiO2 nanostructures stabilised on SiO2: CO and preferential CO oxidation. Top. Catal. 2009, 52, 912-919.

20

Soares, J. M. C.; Bowker, M. Low temperature CO oxidation on supported and unsupported gold compounds. Appl. Catal. A-Gen. 2005, 291, 136-144.

21

Grunwaldt, J. D.; Kiener, C.; Wogerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal. 1999, 181, 223-232.

22

Chou, J.; McFarland, E. W. Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania. Chem. Commun. 2004, 1648-1649.

23

Zheng, N.; Stucky, G. D. A general synthetic strategy for oxide-supported metal nanoparticle catalysts. J. Am. Chem. Soc. 2006, 128, 14278-14280.

24

Yin, H. F.; Wang, C.; Zhu, H. G.; Overbury, S. H.; Sun, S. H.; Dai, S. Colloidal deposition synthesis of supported gold nanocatalysts based on Au-Fe3O4 dumbbell nanoparticles. Chem. Commun. 2008, 4357-4359.

25

Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229-234.

26

Zheng, N.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550-6551.

27

Shi, W.; Zeng, H.; Sahoo, Y.; Ohulchanskyy, T. Y.; Ding, Y.; Wang, Z. L.; Swihart, M.; Prasad, P. N. A general approach to binary and ternary hybrid nanocrystals. Nano Lett. 2006, 6, 875-881.

28

Yu, H.; Chen, M.; Rice, P. M.; Wang, S. X.; White, R. L.; Sun, S. Dumbbell-like bifunctional Au-Fe3O4 nanoparticles. Nano Lett. 2005, 5, 379-382.

29

Chen, M. S.; Goodman, D. W. Catalytically active gold: From nanoparticles to ultrathin films. Acc. Chem. Res. 2006, 39, 739-746.

File
nr-2-12-975_ESM.pdf (335.2 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 September 2009
Revised: 01 November 2009
Accepted: 15 November 2009
Published: 01 December 2009
Issue date: December 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We thank the National Natural Science Foundation of China (Nos. 20871100, 20721001), and a Distinguished Young Investigator Grant (No. 20925103), Research Fund for the Doctoral Program of Higher Education of China (No. 200803841010), Natural Science Foundation of Fujian for a Distinguished Young Investigator Grant (No. 2009J06005) and the Key Scientific Project of Fujian Province (No. 2009HZ0002-1).

Rights and permissions

This article is published with open access at Springerlink.com

Return