Journal Home > Volume 2 , Issue 12

Large scale zigzag zinc blende single crystal ZnS nanowires have been successfully synthesized during a vapor phase growth process together with a small yield of straight wurtzite single crystal ZnS nanowires. AuPd alloy nanoparticles were utilized to catalyze a vapor-solid-solid growth process of both types of ZnS nanowires, instead of the more common vapor-liquid-solid growth process. Surprisingly, the vapor-phase grown zigzag zinc blende ZnS nanowires are metastable under high-energy electron irradiation in a transmission electron microscope, with straight wurtzite nanowires being much more stable. Upon exposure to electron irradiation, a wurtzite ZnO nanoparticle layer formed on the zigzag zinc blende ZnS nanowire surface with concomitant displacement damage. Both electron inelastic scattering and surface oxidation as a result of electron-beam heating occur during this structure evolution process. When prolonged higher-voltage electron irradiation was applied, local zinc blende ZnS nanowire bodies evolved into ZnS-ZnO nanocables, and dispersed ZnS-ZnO nanoparticle networks. Random AuPd nanoparticles were observed distributed on zigzag ZnS nanowire surfaces, which might be responsible for a catalytic oxidation effect and speed up the surface oxidation-induced structure evolution.


menu
Abstract
Full text
Outline
About this article

Zigzag Zinc Blende ZnS Nanowires: Large Scale Synthesis and Their Structure Evolution Induced by Electron Irradiation

Show Author's information Daesoo Kim§Paresh Shimpi§Pu-Xian Gao( )
Department of ChemicalMaterials and Biomolecular Engineering & Institute of Material ScienceUniversity of Connecticut, Storrs, CT 06269-3136USA

§ These authors equally contributed to this work.

Abstract

Large scale zigzag zinc blende single crystal ZnS nanowires have been successfully synthesized during a vapor phase growth process together with a small yield of straight wurtzite single crystal ZnS nanowires. AuPd alloy nanoparticles were utilized to catalyze a vapor-solid-solid growth process of both types of ZnS nanowires, instead of the more common vapor-liquid-solid growth process. Surprisingly, the vapor-phase grown zigzag zinc blende ZnS nanowires are metastable under high-energy electron irradiation in a transmission electron microscope, with straight wurtzite nanowires being much more stable. Upon exposure to electron irradiation, a wurtzite ZnO nanoparticle layer formed on the zigzag zinc blende ZnS nanowire surface with concomitant displacement damage. Both electron inelastic scattering and surface oxidation as a result of electron-beam heating occur during this structure evolution process. When prolonged higher-voltage electron irradiation was applied, local zinc blende ZnS nanowire bodies evolved into ZnS-ZnO nanocables, and dispersed ZnS-ZnO nanoparticle networks. Random AuPd nanoparticles were observed distributed on zigzag ZnS nanowire surfaces, which might be responsible for a catalytic oxidation effect and speed up the surface oxidation-induced structure evolution.

Keywords: electron irradiation, transmission electron microscopy, ZnS nanowire, polymorph, vapor-solid-solid growth, structure evolution

References(26)

1

Ahn, H. S.; Lee, K. R.; Kim, D. Y.; Han, S. W. Field emission of doped carbon nanotubes. Appl. Phys. Lett. 2006, 88, 93122.

2

Jo, S. H.; Lao, J. Y.; Ren, Z. F.; Farrer, R. A.; Baldacchini, T.; Fourkas, J. T. Field-emission studies on thin films of zinc oxide nanowires. Appl. Phys. Lett. 2003, 83, 4821.

3

Ha, B.; Seo, S. H.; Cho, J. H.; Yoon, C. S.; Yoo, J.; Yi, G. C.; Park, C. Y.; Lee, C. J. Optical and field emission properties of thin single-crystalline GaN nanowires. J. Phys. Chem. B. 2005, 109, 11095-11099.

4

He, J. H.; Yang, R. S.; Chueh, Y. L.; Chou, L. J.; Chen, L. J.; Wang, Z. L. Aligned AlN nanorods with multi-tipped surfaces-growth, field-emission, and cathodoluminescence properties. Adv. Mater. 2006, 18, 650-654.

5

Bredol, M.; Merikhi, J. Structure- and size-controlled ultrafine ZnS nanowires. J. Mater. Sci. 1998, 33, 471-476.

6

Kar, S.; Biswas, S.; Chaudhuri, S. Catalytic growth and photoluminescence properties of ZnS nanowires. Nanotechnology 2005, 16, 737-740.

7

Fang, X.; Ye, C.; Zhang, L.; Wang, Y.; Wu, Y. Temperature-controlled catalytic growth of ZnS nanostructures by the evaporation of ZnS nanopowders. Adv. Funct. Mater. 2005, 15, 63-68.

8

Moon, H.; Nam, C.; Kim, C.; Kim, B. Synthesis and photoluminescence of zinc sulfide nanowires by simple thermal chemical vapor deposition. Mater. Res. Bull. 2006, 41, 2013-2017.

9

Moore, D.; Wang, Z. L. Growth of anisotropic one-dimensional ZnS nanostructures. J. Mater. Chem. 2006, 16, 3898-3905.

10

Chang, Y.; Wang, M.; Chen, X.; Ni, S.; Qiang, W. Field emission and photoluminescence characteristics of ZnS nanowires via vapor phase growth. Solid State Comm. 2007, 142, 295-298.

11

Fan, X.; Meng, X.; Zhang, X.; Wu, S.; Lee, S. Formation of ZnS/SiO2 nanocables. Appl. Phys. Lett. 2005, 86, 173111.

12

Jiang, Y.; Zhang, W. J.; Jie, J. S.; Meng, X. M.; Zapien, J. A.; Lee, S. Homoepitaxial growth and lasing properties of ZnS nanowire and nanoribbon arrays. Adv. Mater. 2006, 18, 1527-1532.

13

Zhang, X.; Zhang, Y.; Song, Y.; Wang, Z.; Yu, D. Optical properties of ZnS nanowires synthesized via simple physical evaporation. Physica E 2005, 28, 1-6.

14

Geng, B. Y.; Liu, X. W.; Du, Q. B.; Wei, X. W.; Zhang, L. D. Structure and optical properties of periodically twinned ZnS nanowires. Appl. Phys. Lett. 2006, 88, 163104.

15

Yan, J.; Fang X. S.; Zhang, L.; Bando, Y.; Dierre, B.; Sekiguchi, T.; Gautam, U. K.; Golberg, D. Structure and cathodoluminescence of individual ZnS/ZnO biaxial nanobelt heterostructures. Nano Lett. 2008, 8, 2794-2799.

16

Fang, X. S.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Zhi, C. Y.; Dierre, B.; Liu, B. D.; Zhai, T. Y.; Sekiguchi, T.; Koide, Y.; Golberg, D. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 2009, 21, 2034-2039.

17

Ding, Y.; Wang, X. D.; Wang, Z. L. Phase controlled synthesis of ZnS nanobelts: Zinc blende vs. wurtzite. Chem. Phys. Lett. 2004, 398, 32-36.

18

Pan, Y. W.; Yu, J.; Hu, Z.; Li, H. D.; Cui, Q. L.; Zou, G. T. Pressure-induced structural transitions of the zinc sulfide nano-particles with different sizes. J. Mater. Sci. Technol. 2007, 23, 193-195.

19

Meng, X. M.; Liu, J.; Jiang, Y.; Chen, W. W.; Lee, C. S.; Bello, I.; Lee, S. T. Structure- and size-controlled ultrafine ZnS nanowires. Chem. Phys. Lett. 2003, 382, 434-438.

20

Li, Q.; Wang, C. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett. 2003, 82, 1398.

21

Shi, L.; Xu, Y. M.; Li, Q.; Wu, Z. Y.; Chen, F. R.; Kai, J. J. Single crystalline ZnS nanotubes and their structural degradation under electron beam irradiation. Appl. Phys. Lett. 2007, 90, 211910.

22
Massalski, T. B. Binary Alloy Phase Diagrams, 2nd Ed.; ASM International: Materials Park, OH, 1990; Vol. 1.
23

Buffat, P.; Borel, J. P. Size effect on the melting temperature of gold particles. Phys. Rev. A 1976, 13, 2287-2298.

24

Campos, L. C.; Tonezzer, M.; Ferlauto, A. S.; Grillo, V.; Magalhães-Paniago, R.; Oliveira, S.; Ladeira, L. O.; Lacerda. R. G. Vapor-solid-solid growth mechanism driven by epitaxial match between solid AuZn alloy catalyst particles and ZnO nanowires at low temperatures. Adv. Mater. 2008, 20, 1499-1504.

25

Wagner, R. S.; Doherty, C. J. Mechanism of branching and kinking during VLS crystal growth. J. Electrochem. Soc. 1968, 115, 93-99.

26

Chen, H.; Shi, D.; Qi, J.; Jia, J.; Wang, B. The stability and electronic properties of wurtzite and zinc-blende ZnS nanowires. Phys. Lett. A 2009, 373, 371-375.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 September 2009
Revised: 23 October 2009
Accepted: 23 October 2009
Published: 01 December 2009
Issue date: December 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors are grateful for the financial support from the University of Connecticut New Faculty start-up funds, and the University of Connecticut Large Faculty Research Grant. Acknowledgement is also made to the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research.

Rights and permissions

This article is published with open access at Springerlink.com

Return