Journal Home > Volume 2 , Issue 12

Single-walled carbon nanotubes (SWNTs) are possible nano-injectors and delivery vehicles of molecular probes and drugs into cells. In order to explore the interaction between lipid membranes and carbon nanotubes, we investigate the binding mechanism of dipalmitoylphosphatidylcholine (DPPC) with SWNTs by molecular dynamics. In low concentration range simulations, the DPPC molecules form a supramolecular two-layered cylindrical structure wrapped around the carbon nanotube surface. The hydrophobic part of DPPC is adsorbed on the surface of the nanotube, and the hydrophilic top is oriented towards the aqueous phase. For higher concentration ranges, the DPPC molecules are found to form a supramolecular multi-layered structure wrapped around the carbon nanotube surface. At the saturation point a membrane-like structure is self-assembled with a width of 41.4 Å, which is slightly larger than the width of a cell membrane. Our study sheds light on the existing conflicting simulation data on adsorption of single-chained phospholipids.


menu
Abstract
Full text
Outline
About this article

Molecular Dynamics Study of Dipalmitoylphosphatidylcholine Lipid Layer Self-Assembly onto a Single-Walled Carbon Nanotube

Show Author's information Hongming WangServaas MichielssensSamuel L. C. MoorsArnout Ceulemans( )
Laboratory of Quantum ChemistryDepartment of Chemistry and INPAC Institute for Nanoscale Physics and ChemistryKatholieke Universiteit Leuven, LeuvenBelgium

Abstract

Single-walled carbon nanotubes (SWNTs) are possible nano-injectors and delivery vehicles of molecular probes and drugs into cells. In order to explore the interaction between lipid membranes and carbon nanotubes, we investigate the binding mechanism of dipalmitoylphosphatidylcholine (DPPC) with SWNTs by molecular dynamics. In low concentration range simulations, the DPPC molecules form a supramolecular two-layered cylindrical structure wrapped around the carbon nanotube surface. The hydrophobic part of DPPC is adsorbed on the surface of the nanotube, and the hydrophilic top is oriented towards the aqueous phase. For higher concentration ranges, the DPPC molecules are found to form a supramolecular multi-layered structure wrapped around the carbon nanotube surface. At the saturation point a membrane-like structure is self-assembled with a width of 41.4 Å, which is slightly larger than the width of a cell membrane. Our study sheds light on the existing conflicting simulation data on adsorption of single-chained phospholipids.

Keywords: self-assembly, carbon nanotubes, molecular dynamics, Cell membrane, nano-injector

References(38)

1

Star, A.; Gabriel, J. P.; Bradley, K.; Grüne, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459-463.

2

Besteman, K.; Lee, J. -O.; Wiertz, F. G. M.; Heering, H. A.; Dekker, C. Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett. 2003, 3, 727-730.

3

Chen, R. J.; Zhang, Y. G.; Wang, D. W.; Dai, H. J. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838-3839.

4

Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. Nanotube molecular transporters internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 2004, 126, 6850-6851.

5

Chen, X.; Kis, A.; Zettl, A.; Bertozzi, C. R. A cell nanoinjector based on carbon nanotubes. Proc. Natl. Acad. Sci. USA 2007, 104, 8218-8222.

6

Porter, A. E.; Gass, M.; Muller, K.; Skepper, J. N.; Midgley, P. A.; Welland, M. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol. 2007, 2, 713-717.

7

Vakarelski, I. U.; Brown, S. C.; Higashitani, K.; Moudgil, B. M. Penetration of living cell membranes with fortified carbon nanotube tips. Langmuir 2007, 23, 10893-10896.

8

Bianco, A.; Hoebeke, J.; Godefroy, S.; Chaloin, O.; Pantarotto, D.; Briand, J.; Muller, S.; Prato, M.; Partidos, C. D. Cationic carbon nanotubes bind to CpG oligodeoxynucleotides and enhance their immunostimulatory properties. J. Am. Chem. Soc. 2005, 127, 58-59.

9

Cherukuri, P.; Bachilo, S. M.; Litovsky, S. H.; Weisman, R. B. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 2004, 126, 15638-15639.

10

Lu, Q.; Moore, J. M.; Huang, G.; Mount, A. S.; Rao, A. M.; Larcom, L. L.; Ke, P. C. RNA polymer translocation with single-walled carbon nanotubes. Nano Lett. 2004, 4, 2473-2477.

11

Lopez, C. F.; Nielsen, S. O.; Moore, P. B.; Klein, M. L. Understanding nature's design for a nanosyringe. Proc. Natl. Acad. Sci. USA 2007, 101, 4431-4434.

12

Lopez, C. F.; Nielsen, S. O.; Ensing, B.; Moore, P. B.; Klein, M. L. Structure and dynamics of model pore insertion into a membrane. Biophys. J. 2005, 88, 3083-3094.

13

Wallace, E. J.; Sansom, M. S. P. Blocking of carbon nanotube based nanoinjectors by lipids: A simulation study. Nano Lett. 2008, 8, 2751-2756.

14

O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593-596.

15

Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T. W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775-778.

16

Zhou, X. J.; Moran-Mirabal, J. M.; Craighead, H. G.; McEuen, P. L. Supported lipid bilayer/carbon nanotube hybrids. Nat. Nanotechnol. 2007, 2, 185-190.

17

Wu, Y.; Hudson, J. S.; Lu, Q.; Moore, J. M.; Mount, A. S.; Rao, A. M.; Alexov, E.; Ke, P. C. Coating single-walled carbon nanotubes with phospholipids. J. Phys. Chem. B. 2006, 110, 2475-2478.

18

Qiao, R.; Ke, P. C. Lipid-carbon nanotube self-assembly in aqueous solution. J. Am. Chem. Soc. 2006, 128, 13656-13657.

19

Wallace, E. J.; Sansom, M. S. P. Carbon nanotube/detergent interactions via coarse-grained molecular dynamics. Nano Lett. 2007, 7, 1923-1928.

20

Smondyrev, A.; Berkowitz, M. L. Molecular dynamics study of Sn-1 and Sn-2 chain conformations in dipalmitoyl-phosphatidylcholine membranes. J. Chem. Phys. 1999, 110, 3981-3985.

21
Berendsen, H. J. C. J. P.; Postma, M.; van Gunsteren, W. F.; Hermans, J. In: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry, Jerusalem, Israel, April 13-16, Pullman, B., Ed.; Kluwer: Reidel, Dordrecht, 1981; p. 331.
22

Essman, U.; Perela, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995, 103, 8577-8593.

23

Rossetti, G.; Magistrato, A.; Pastore, A.; Persichetti, F.; Carloni, P. Structural properties of polyglutamine aggregates investigated via molecular dynamics simulations. J. Phys. Chem. B 2008, 112, 16843-16850.

24

Shao, Q.; Huang, L.; Zhou, J.; Lu, L.; Zhang, L.; Lu, X.; Jiang, S.; Gubbins, K. E.; Zhu, Y.; Shen, W. Molecular dynamics study on diameter effect in structure of ethanol molecules confined in single-walled carbon nanotubes. J. Phys. Chem. C 2007, 111, 15677-15685.

25

Berger, O.; Edholm, Olle.; Jahnig, F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys. J. 1997, 72, 2002-2013.

26

Egbert, E.; Marrink, S. J.; Berends, H. J. C. Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 1994, 22, 423-436.

27

Ryckaert, J. P.; Bellemans, A. Molecular dynamics of liquid n-butane near its boiling point. Chem. Phys. Lett. 1975, 30, 123-125.

28

Oostenbrink, C.; Villa, A.; Mark, A. E.; van Gunsteren, W. F. V. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656-1676.

29

Berendsen, H. J. C.; Postma, J. P. M.; Di Nola, A.; Haak, J. R. L. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684-3690.

30

Hess, B. A. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theor. Comput. 2008, 4, 116-122.

31

Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. GROMACS-A message-passing parallel molecular dynamics implementation. Comput. Phys. Comm. 1995, 91, 43-56, .

32

Lindahl, E.; Hess, B.; van der Spoel, D. GROMACS 3.0: A package for molecular simulation and trajectory analysis, J. Mol. Model. 2001, 7, 306-317.

33

Kasson, P. M.; Pande, V. S. Molecular dynamics simulation of lipid reorientation at bilayer edges. Biophys. J. 2004, 86, 3744-3749.

34

Krishnamurty, S.; Stefanov, M.; Mineva, T.; Begu, S.; Devoisselle, J. M.; Goursot, A.; Zhu, R.; Salahub, D. R. Density functional theory-based conformational analysis of a phospholipid molecule (dimyristoyl-phosphatidylcholine). J. Phys. Chem. B 2008, 112, 13433-13442.

35

Wei, C. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett. 2006, 6, 1627-1631.

36

De Vries, A. H.; Mark, A. E.; Marrink, S. J. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc. 2004, 126, 4488-4489.

37

De Vries, A. H.; Mark, A. E.; Marrink, S. J. Molecular dynamics simulation of the spontaneous formation of a small DPPC vesicle in water in atomistic detail. J. Am. Chem. Soc. 2004, 126, 4488-4489.

38

Lu, J.; Xu, Y.; Chen, J.; Huang, F. Effect of lysophosphatidylcholine on behavior and structure of phosphatidylcholine liposomes. Sci. China Ser. C 1997, 40, 622-629.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 August 2009
Revised: 19 October 2009
Accepted: 19 October 2009
Published: 01 December 2009
Issue date: December 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We thank the Flemish government for financial support through the Concerted Action Scheme. H. W. is indebted to INPAC for a postdoctoral grant. S. M. is the recipient of a doctoral grant from the Flemish Science Foundation (FWO).

Rights and permissions

This article is published with open access at Springerlink.com

Return