Journal Home > Volume 2 , Issue 11

We present a chemical vapor deposition (CVD) method for the growth of uniform single-walled carbon nanotube (SWNT) arrays on a stable temperature (ST)-cut single crystal quartz substrate using a mixture of methanol and ethanol as carbon source. It is found that introducing methanol during the growth can improve the density and the length of the well-aligned SWNTs in the arrays as well as increase the SWNT/quartz interaction. Obvious "up-shifts" of G-band frequencies in the Raman spectra have been found for the aligned SWNTs. A well-designed control experiment shows that the G-band "up-shifts" originate from the strong interaction between SWNTs and the quartz substrate. It is believed that exploring this interaction will help to elucidate the growth mechanism; ultimately, this will help realize the promise of controlling the chirality of SWNTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct Observation of the Strong Interaction Between Carbon Nanotubes and Quartz Substrate

Show Author's information Lei Ding1Weiwei Zhou1Thomas P. McNicholas1Jinyong Wang2Haibin Chu2Yan Li2Jie Liu1( )
Department of Chemistry Duke UniversityDurham, North Carolina 27708 USA
Beijing National Laboratory for Molecular Sciences Key Laboratory for the Physics and Chemistry of Nanodevices National Laboratory of Rare Earth Material Chemistry and Application College of Chemistry and Molecular Engineering Peking UniversityBeijing 100871 China

Abstract

We present a chemical vapor deposition (CVD) method for the growth of uniform single-walled carbon nanotube (SWNT) arrays on a stable temperature (ST)-cut single crystal quartz substrate using a mixture of methanol and ethanol as carbon source. It is found that introducing methanol during the growth can improve the density and the length of the well-aligned SWNTs in the arrays as well as increase the SWNT/quartz interaction. Obvious "up-shifts" of G-band frequencies in the Raman spectra have been found for the aligned SWNTs. A well-designed control experiment shows that the G-band "up-shifts" originate from the strong interaction between SWNTs and the quartz substrate. It is believed that exploring this interaction will help to elucidate the growth mechanism; ultimately, this will help realize the promise of controlling the chirality of SWNTs.

Keywords: Raman spectroscopy, chemical vapor deposition (CVD), Single-walled carbon nanotube, quartz wafer, G-band "up-shift"

References(23)

1

Kocabas, C.; Dunham, S.; Cao, Q.; Cimino, K.; Ho, X. N.; Kim, H. S.; Dawson, D.; Payne, J.; Stuenkel, M.; Zhang, H.; Banks, T.; Feng, M.; Rotkin, S. V.; Rogers, J. A. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes. Nano Lett. 2009, 9, 1937–1943.

2

Kocabas, C.; Kim, H. S.; Banks, T.; Rogers, J. A.; Pesetski, A. A.; Baumgardner, J. E.; Krishnaswamy, S. V.; Zhang, H. Radio frequency analog electronics based on carbon nanotube transistors. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1405–1409.

3

Cao, Q.; Kim, H. S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C. J.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

4

Cubukcu, E.; Degirmenci, F.; Kocabas, C.; Zimmler, M. A.; Rogers, J. A.; Capasso, F. Aligned carbon nanotubes as polarization-sensitive, molecular near-field detectors. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 2495–2499.

5

Rao, S. G.; Huang, L.; Setyawan, W.; Hong, S. H. Large-scale assembly of carbon nanotubes. Nature 2003, 425, 36–37.

6

LeMieux, M. C.; Roberts, M.; Barman, S.; Jin, Y. W.; Kim, J. M.; Bao, Z. N. Self-sorted, aligned nanotube networks for thin-film transistors. Science 2008, 321, 101–104.

7

Ural, A.; Li, Y. M.; Dai, H. J. Electric-field-aligned growth of single-walled carbon nanotubes on surfaces. Appl. Phys. Lett. 2002, 81, 3464–3466.

8

Huang, S. M.; Maynor, B.; Cai, X. Y.; Liu, J. Ultralong, well-aligned single-walled carbon nanotube architectures on surfaces. Adv. Mater. 2003, 15, 1651–1655.

9

Zhou, W. W.; Han, Z. Y.; Wang, J. Y.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y. W.; Yan, C. H.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987–2990.

10

Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140–6143.

11

Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294–5295.

12

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

13

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

14

Ding, L.; Yuan, D. N.; Liu, J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

15

Yuan, D. N.; Ding, L.; Chu, H. B.; Feng, Y. Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576–2579.

16

Zhou, W. W.; Rutherglen, C.; Burke, P. J. Wafer scale synthesis of dense aligned arrays of single-walled carbon nanotubes. Nano Res. 2008, 1, 158–165.

17

Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-walled carbon nanotubes. Nano Lett. 2009, 9, 800–805.

18

Kang, S. J.; Kocabas, C.; Kim, H. -S.; Cao, Q.; Meitl, M. A.; Khang, D. -Y.; Rogers, J. A. Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. Nano Lett. 2007, 7, 3343–3348.

19
McNicholas, T. P.; Ding, L.; Yuan, D. N.; Liu, J. Density enhancement of aligned single-walled carbon nanotube thin films on quartz substrates by sulfur-assisted synthesis. Nano Lett. 2009, in press, DOI: 10/1021/nl901890x.https://doi.org/10.1021/nl901890x
DOI
20

Rutherglen, C.; Burke, P. J. Nano-electromagnetics: Circuit and electromagnetic properties of carbon nanotubes. Small 2009, 5, 884–906.

21

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

22

Rohrl, J.; Hundhausen, M.; Emtsev, K. V.; Seyller, Th.; Graupner, R.; Ley, L. Raman spectra of epitaxial graphene on SiC(0001). Appl. Phys. Lett. 2008, 92, 201918.

23

Ozel, T.; Abdula, D.; Hwang, E.; Shim, M. Nonuniform compressive strain in horizontally aligned single-walled carbon nanotubes grown on single crystal quartz. ACS Nano 2009, 3, 2217–2224.

File
nr-2-11-903_ESM.pdf (432 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 09 September 2009
Revised: 08 October 2009
Accepted: 11 October 2009
Published: 11 November 2009
Issue date: November 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The work is supported in part by a grant from Naval Research Laboratory (NRL) (N00173-04-1-G902) and Office of Naval Research (ONR) (N00014-09-1-0163). Y. L. acknowledges financial support of the National Natural Science Foundation of China (NSFC) (Nos. 50772002 and 90406018) and the Ministry of Science and Technology of China (Nos. 2006CB932403, 2007CB936202, and 2006CB932701) of China.

Rights and permissions

This article is published with open access at Springerlink.com

Return