Journal Home > Volume 2 , Issue 11

A method for the non-destructive purification of single-walled carbon nanotubes (SWNTs) using classical coordination chemistry to remove the metal catalyst has been developed. In preliminary tests, the conductivity of films based on the resulting SWNTs was markedly better than that of films prepared from SWNTs purified by treatment with oxidizing acid solutions. The transparent and conducting SWNT films have potential applications in optoelectronic devices.


menu
Abstract
Full text
Outline
About this article

Minimizing Purification-Induced Defects in Single-Walled Carbon Nanotubes Gives Films with Improved Conductivity

Show Author's information Yu Wang1Liping Huang1Yunqi Liu1( )Dacheng Wei1Hongliang Zhang1Hisashi Kajiura2( )Yongming Li2
Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic SolidsInstitute of Chemistry, Chinese Academy of SciencesBeijing 100190 China
Materials Laboratories Sony CorporationOkata, Atsugi City, Kanagawa 243-0021 Japan

Abstract

A method for the non-destructive purification of single-walled carbon nanotubes (SWNTs) using classical coordination chemistry to remove the metal catalyst has been developed. In preliminary tests, the conductivity of films based on the resulting SWNTs was markedly better than that of films prepared from SWNTs purified by treatment with oxidizing acid solutions. The transparent and conducting SWNT films have potential applications in optoelectronic devices.

Keywords: conductivity, transparency, Carbon nanotube film, coordination chemistry

References(34)

1

Rotkin, S. V.; Subramoney, S. Applied Physics of Carbon Nanotubes: Fundamentals of Theory, Optics and Transport Devices; Springer-Verlag: Berlin, 2005.

DOI
2

Calvert, P. Nanotube composites: A recipe for strength. Nature 1999, 399, 210–211.

3

Ajayan, P. M. Nanotubes from carbon. Chem. Rev. 1999, 99, 1787–1800.

4

Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.

5

Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453–456.

6

Bonard, J. M.; Weiss, N.; Kind, H.; Stöckli, T.; Forro, L.; Kern, K.; Châtelain, A. Tuning the field emission properties of patterned carbon nanotube films. Adv. Mater. 2001, 13, 184–188.

DOI
7

Tohji, K.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ito, S.; Nishina, Y. Purification procedure for single-walled nanotubes. J. Phys. Chem. B 1997, 101, 1974–1978.

8

Shi, Z.; Lian, Y.; Liao, F.; Zhou, X.; Gu, Z.; Zhang, Y.; Iijima, S. Purification of single-wall carbon nanotubes. Solid State Commun. 1999, 112, 35–37.

9

Mizoguti, E.; Nihey, F.; Yudasaka, M.; Iijima, S.; Ichihashi, T.; Nakamura, K. Purification of single-wall carbon nanotubes by using ultrafine gold particles. Chem. Phys. Lett. 2000, 321, 297–301.

10

Zimmerman, J. L.; Bradley, R. K.; Huffman, C. B.; Huffman, R. H.; Hauge, R. H.; Margrave, J. L. Gas-phase purification of single-wall carbon nanotubes. Chem. Mater. 2000, 12, 1361–1366.

11

Dujardin, E.; Ebbesen, T. W.; Krishnan, A.; Treacy, M. M. J. Wetting of single shell carbon nanotubes. Adv. Mater. 1998, 10, 1472–1475.

DOI
12

Rinzler, A. G.; Liu, J.; Dai, H.; Nikolaev, P.; Huffman, C. B.; Rodriguez-Macias, F. J.; Boul, P. J.; Lu, A. H.; Colbert, D. T.; Lee, R. S.; Fischer, J. E.; Rao, A. M.; Eklund, P. C.; Smalley, R. E. Large-scale purification of single-wall carbon nanotubes: Process, product, and characterization. Appl. Phys. A 1998, 67, 29–37.

13

Dillon, A. C.; Gennett, T.; Jones, K. M.; Alleman, J. L.; Parilla, P. A.; Heben, M. J. A simple and complete purification of single-walled carbon nanotube materials. Adv. Mater. 1999, 11, 1354–1358.

DOI
14

Bandow, S.; Rao, A. M.; Williams, K. A.; Thess, A.; Smalley, R. E.; Eklund, P. C. Purification of single-wall carbon nanotubes by microfiltration. J. Phys. Chem. B 1997, 101, 8839–8842.

15

Shelmov, K. B.; Esenaliev, R. O.; Rinzler, A. G.; Huffman, C. B.; Smalley, R. E. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett. 1998, 282, 429–434.

16

Tohji, K.; Goto, T.; Takahashi, H.; Shinoda, Y.; Shimizu, N.; Jeyadevan, B.; Matsuoka, I.; Saito, Y.; Kasuya, A.; Ohsuna, T.; Hiraga, K.; Nishina, Y. Purifying single-walled nanotubes. Nature 1996, 383, 679–680.

17

Park, Y. S.; Choi, Y. C.; Kim, K. S.; Chung, D. C.; Bae, D. J.; An, K. H.; Lim, S. C.; Zhu, X. Y.; Lee, Y. H. High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 2001, 39, 655–661.

18

Moon, J. M.; An, K. H.; Lee, Y. H.; Park, Y. S.; Bae, D. J.; Park, G. S. High-yield purification process of singlewalled carbon nanotubes. J. Phys. Chem. B 2001, 105, 5677–5681.

19

Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605.

20

de Heer, W. A.; Poncharal, P.; Berger, C.; Gezo, J.; Song, Z. M.; Bettini, J.; Ugarte, D. Liquid carbon, carbon–glass beads, and the crystallization of carbon nanotubes. Science 2005, 307, 907–910.

21

Itkis, M. E.; Perea, D.; Niyogi, S.; Rickard, S.; Hamon, M.; Hu, H.; Zhao, B.; Haddon, R. C. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett. 2003, 3, 309–314.

22

Yao, M. G.; Liu, B. B.; Zou, Y. G.; Wang, L.; Cui, T.; Zou, G. T. Effect of rare-earth component of the RE/Ni catalyst on the formation and nanostructure of single-walled carbon nanotubes. J. Phys. Chem. B 2006, 110, 15284–15290.

23

Wang, J.; Wang, Y.; Zhang, Z. H.; Zhang, X. D.; Tong, J.; Liu, X. Z.; Liu, X. Y.; Zhang, Y.; Pan, Z. J. Syntheses, characterization, and structure determination of nine-coordinate Na[Y(edta)(H2O)3]·5H2O and eight-coordinate Na[Y(cydta)(H2O)2]·5H2O complexes. J. Struct. Chem. 2005, 46, 895–905.

24

Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Transparent, conductive carbon nanotube films. Science 2004, 305, 1273–1276.

25

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

26

Rao, A. M.; Chen, J.; Richter, E.; Schlecht, U.; Eklund, P. C.; Haddon, R. C.; Venkateswaran, U. D.; Kwon, Y. K.; Tománek. D. Effect of van der Waals interactions on the Raman modes in single walled carbon nanotubes. Phys. Rev. Lett. 2001, 86, 3895–3898.

27

Furtado, C. A.; Kim, U. J.; Gutierrez, H. R.; Pan, L.; Dickey, E. C.; Eklund, P. C. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 2004, 126, 6095–6105.

28

Yu, Z.; Brus, L. Rayleigh and Raman scattering from individual carbon nanotube bundles. J. Phys. Chem. B 2001, 105, 1123–1134.

29

Wang, J.; Wang, Y.; Zhang, X. D.; Zhang, Z. H.; Zhang, Y.; Liu, X. Z.; Wang, L.; Li, H. Coordinate structures and change laws of rare earth metal complexes with aminopolycarboxylic acids, I. NTA, EDTA and CYDTA series. Chinese J. Struct. Chem. 2004, 23, 1169–1176.

30

Kim, D. S.; Nepal, D.; Geckeler, K. E. Individualization of single-walled carbon nanotubes: Is the solvent important? Small 2005, 1, 1117–1124.

31

Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Opening and purification of carbon nanotubes in high yields. Adv. Mater. 1995, 7, 275–276.

32

Kovtyukhova, N. I.; Mallouk, T. E.; Pan, L.; Dickey, E. C. Individual single-walled nanotubes and hydrogels made by oxidative exfoliation of carbon nanotube ropes. J. Am. Chem. Soc. 2003, 125, 9761–9769.

33

Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; M. Shaffer, S. P.; Windle, A. H.; Friend, R. H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 1999, 103, 8116–8121.

34

Moeller, T.; Martin, D. F.; Thompson, L. C.; Ferrús, R.; Feistel, G. R.; Randall, W. J. The coordination chemistry of yttrium and the rare earth metal ions. Chem. Rev. 1965, 65, 1–50.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 May 2009
Revised: 03 September 2009
Accepted: 06 September 2009
Published: 11 November 2009
Issue date: November 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We are grateful for the financial support from the National Natural Science Foundation of China (Nos. 60736004, 50673093, and 20721061), the Major State Basic Research Development Program (2006CB806200 and 2006CB932103), the National High-Tech Research Development Program of China (2008AA03Z101), the Chinese Academy of Sciences and SONY Corporation, Japan.

Rights and permissions

This article is published with open access at Springerlink.com

Return