Journal Home > Volume 2 , Issue 10

Various materials have been found to "catalyze" carbon nanotube growth in chemical vapor deposition (CVD) when they become nano-sized particles. These involve not only metals, such as Pd, Pt, Au, Ag, and Cu, but also semiconductors, such as Si, Ge, and SiC. Alumina and diamond nanoparticles also produce carbon nanotubes. These "catalysts", which are better called "seeds", can be categorized into two types: one type forms a eutectic liquid or highly-mobile alloy with carbon, and carbon atoms precipitate from the eutectic alloy; the other type remains as a solid phase and form a carbon surface layer during CVD growth. In this paper, we review recent studies of SWCNT growth with these non-iron-group materials and highlight the mechanisms involved.


menu
Abstract
Full text
Outline
About this article

Single-Walled Carbon Nanotube Growth with Non-Iron-Group "Catalysts" by Chemical Vapor Deposition

Show Author's information Yoshikazu Homma1( )Huaping Liu1,Daisuke Takagi2Yoshihiro Kobayashi2,
Department of PhysicsTokyo University of Science, ShinjukuTokyo162-8601Japan
NTT Basic Research LaboratoriesNippon Telegraph and Telephone Corporation, AtsugiKanagawa243-0198Japan

Current address: National Institute of Advanced Industrial Science and Technology, Nanotechnology Research Institute, Tsukuba, Ibaraki, 305-8561, Japan

Current address: Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan

Abstract

Various materials have been found to "catalyze" carbon nanotube growth in chemical vapor deposition (CVD) when they become nano-sized particles. These involve not only metals, such as Pd, Pt, Au, Ag, and Cu, but also semiconductors, such as Si, Ge, and SiC. Alumina and diamond nanoparticles also produce carbon nanotubes. These "catalysts", which are better called "seeds", can be categorized into two types: one type forms a eutectic liquid or highly-mobile alloy with carbon, and carbon atoms precipitate from the eutectic alloy; the other type remains as a solid phase and form a carbon surface layer during CVD growth. In this paper, we review recent studies of SWCNT growth with these non-iron-group materials and highlight the mechanisms involved.

Keywords: growth mechanism, chemical vapor deposition, catalyst, Carbon nanotube, seed, vapor-liquid-solid mechanism

References(33)

1

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon Nanotubes Synthesis, Structure, Properties, and Applications; Springer: Berlin, 2001.

DOI
2

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1999.

DOI
3
Loiseau, A.; Blasé, J. -C.; Charlier, P.; Gadelle, P.; Journet, C.; Laurent, C.; Peigney, A. Synthesis Methods and Growth Mechanisms. In Understanding Carbon Nanotubes: From Basics to Applications; Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, J. -P., Eds.; Springer: Berlin, 2006; pp. 49-130.https://doi.org/10.1007/3-540-37586-4_2
DOI
4

Kong, J.; Cassell, A. M.; Dai, H. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 1998, 292, 567-574.

5

Hamilton, J. C.; Blakely, J. M. Carbon segregation to single crystal surfaces of Pt, Pd and Co. Surf. Sci. 1980, 91, 199-217.

6

Gavillet, J.; Loiseau, A.; Journet, C.; Willaime, F.; Ducastelle, F.; Charlier, J. C. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett. 2001, 87, 275504.

7

Takagi, D.; Homma, Y.; Hibino, H.; Suzuki, S.; Kobayashi, Y. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett. 2006, 6, 2642-2645.

8

Zhou, W.; Han, Z.; Wang, J.; Zhang, Y.; Jin, Z.; Sun, X.; Zhang, Y.; Yan, C.; Li, Y. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett. 2006, 6, 2987-2990.

9

Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Dresselhaus, M. S.; Belcher, A. M.; Kong, J. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J. Am. Chem. Soc. 2007, 129, 1516-1517.

10

Yuan, D.; Ding, L.; Chu, H.; Feng, Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576-2579.

11

Takagi, D.; Hibino, H.; Suzuki, S.; Kobayashi, Y.; Homma, Y. Carbon nanotube growth from semiconductor nanoparticles. Nano Lett. 2007, 7, 2272-2275.

12

Liu, H.; Takagi, D.; Ohno, H.; Chiashi, S.; Chokan, T.; Homma, Y. Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition. Appl. Phys. Express 2008, 1, 014001.

13

Liu, B.; Ren, W.; Gao, L.; Li, S.; Pei, S.; Liu, C.; Jiang, C.; Cheng, H. -M. Metal-catalyst-free growth of single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 2082-2083.

14

Huang, S.; Cai, Q.; Chen, J.; Qian, Y.; Zhang, L. Metal-catalyst-free growth of single-walled carbon nanotubes on substrates. J. Am. Chem. Soc. 2009, 131, 2094-2095.

15

Murakamia, Y.; Chiashi, S.; Miyauchi Y.; Hu, M.; Ogura, M.; Okubo, T.; Maruyama, S. Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy. Chem. Phys. Lett. 2004, 385, 298-303.

16

Noda, S.; Hasegawa, K.; Sugime, H.; Kakehi, K.; Zhang Z.; Maruyama, S.; Yamaguchi, Y. Millimeter-thick single-walled carbon nanotube forests: Hidden role of catalyst support. Jpn. J. Appl. Phys. 2007, 46, L399-L401.

17

Ohno, H.; Takagi, D.; Yamada, K.; Chiashi, S.; Tokura, A.; Homma, Y. Growth of vertically aligned single-walled carbon nanotubes on alumina and sapphire substrates. Jpn. J. Appl. Phys. 2008, 47, 1956-1960.

18

Liu, H.; Takagi, D.; Chiashi, S.; Chokan, T.; Homma, Y. Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. , in press.

19

Okamoto, H.; Massalski, T. B. The Au-C (gold-carbon) system. Bull. Alloy Phase Diag. 1984, 5, 378-379.

20

Hansen, M.; Anderko, K. Constitution of Binary Alloys; McGraw-Hill: New York, 1958.

DOI
21

Oden, L. L.; Gokcen, N. A. Cu-C and Al-Cu-C phase diagrams and thermodynamic properties of C in the alloys from 1550 ℃ to 2300 ℃. Metall. Mat. Trans. B, 1992, 23, 453-458.

22

Takagi, D.; Kobayashi, Y.; Hibino, H.; Suzuki, S.; Homma, Y. Mechanism of gold-catalyzed carbon material growth. Nano Lett. 2008, 8, 832-835.

23

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89-90.

24

Tanaka, T.; Hara, S. Thermodynamic evaluation of nano-particle binary alloy phase diagrams. Z. Metallkd. 2001, 92, 1236-1241.

25

Wautelet, M. Estimation of the variation of the melting temperature with the size of small particles on the basis of a surface-phonon instability model. J. Phys. D. Appl. Phys. 1991, 24, 343-346.

26

Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Atomic-scale in situ observation of carbon nanotube growth from solid state iron carbide nanoparticles. Nano Lett. 2008, 8, 2082-2086.

27

Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729-732.

28

Takagi, D.; Kobayashi, Y.; Homma Y, Carbon nanotube growth from diamond. J. Am. Chem. Soc. 2009, 131, 6922-6923.

29

Liu, H.; Takagi, D.; Chiashi, S.; Homma, Y. Controlled growth of horizontally aligned single-walled carbon nanotube arrays by gas flow process. Nanotechnology 2009, 20, 345604.

30
Liu, H.; Takagi, D.; Chiashi, S.; Homma, Y. The growth of single-walled carbon nanotubes on a silica substrate without using a metal catalyst. Carbon, in press.
31

Fan, X.; Buczko, R.; Puretzky, A. A.; Geohegan, D. B.; Howe, J. Y.; Pantelides, S. T.; Pennycook, S. J. Nucleation of single-walled carbon nanotubes. Phy. Rev. Lett. 2003, 90, 145501.

32

Raty, J. Y.; Gygi, F.; Galli, G. Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from ab initio molecular dynamics simulations. Phy. Rev. Lett. 2005, 95, 096103.

33

Ding, F.; Larsson, P.; Larsson, J. A.; Ahuja, R.; Duan, H.; Rosén, A.; Bolton, K. The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes. Nano Lett. 2008, 8, 463-468.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 May 2009
Revised: 18 August 2009
Accepted: 19 August 2009
Published: 22 October 2009
Issue date: October 2009

Copyright

© Tsinghua University Press and Springer-Verlag. This article is published with open access at Springerlink.com 2009

Acknowledgements

Acknowledgements

The authors would like to thank Hideto Yoshika, Osaka University, for supporting TEM observations. They acknowledge the support for their research in this field from CREST, Japan Science and Technology Agency, and a Grant-in-Aid for Scientific Research on Priority Areas (No. 19054015) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

Rights and permissions

Return