Journal Home > Volume 2 , Issue 11

A magnetic ground state is revealed for the first time in zigzag-edged carbon nanoscrolls (ZCNSs) from spin-unrestricted density functional theory calculations. Unlike their flat counterpart—zigzag-edged carbon nanoribbons, which are semiconductors with spin-degenerate electronic structure—ZCNSs show a variety of magnetic configurations, namely spin-selective semiconductors, metals, semimetals, quasi-half-metals, and half-metals. To the best of our knowledge, this is the first discovery of quasi-half-metals and half-metals in a pure hydrocarbon without resort to an external electric field. In addition, we calculated the spin-dependent transportation of the semiconducting ZCNSs with 12 and 20 zigzag chains, and found that they are 13% and 17% at the Fermi level, respectively, suggesting that ZCNS can be an effective spin filter.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magnetism in Carbon Nanoscrolls: Quasi-Half-Metals and Half-Metals in Pristine Hydrocarbons

Show Author's information Lin Lai1Jing Lu1,2( )Lu Wang1Guangfu Luo1Jing Zhou1Rui Qin1Yu Chen1Hong Li1Zhengxiang Gao1( )Guangping Li3Wai Ning Mei2Yutaka Maeda4,5Takeshi Akasaka6Stefano Sanvito7
State Key Laboratory for Mesoscopic Physics and Department of Physics Peking UniversityBeijing 100871 China
Department of Physics University of Nebraska at OmahaOmaha, Nebraska 68182-0266 USA
SICAS Center Lee Hall SUNY OneontaOneonta, NY 13820 USA
Department of Chemistry Tokyo Gakugei UniversityTokyo 184-8501 Japan
PRESTO Japan Science and Technology Agency4-1-8 Honcho Kawagushi, Saitama Japan
Center for Tsukuba Advanced Research Alliance University of TsukubaIbaraki 305-8577 Japan
School of Physics and CRANN Trinity CollegeDublin 2 Ireland

Abstract

A magnetic ground state is revealed for the first time in zigzag-edged carbon nanoscrolls (ZCNSs) from spin-unrestricted density functional theory calculations. Unlike their flat counterpart—zigzag-edged carbon nanoribbons, which are semiconductors with spin-degenerate electronic structure—ZCNSs show a variety of magnetic configurations, namely spin-selective semiconductors, metals, semimetals, quasi-half-metals, and half-metals. To the best of our knowledge, this is the first discovery of quasi-half-metals and half-metals in a pure hydrocarbon without resort to an external electric field. In addition, we calculated the spin-dependent transportation of the semiconducting ZCNSs with 12 and 20 zigzag chains, and found that they are 13% and 17% at the Fermi level, respectively, suggesting that ZCNS can be an effective spin filter.

Keywords: graphene, Carbon nanoscrolls, quasi-half-metals, half-metals, spin-selective, spin filter

References(31)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Avouris, P.; Chen, Z. H.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

4

Son, Y. W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

5

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

6

Barone, V.; Hod, O.; Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett. 2006, 6, 2748–2754.

7

Han, M. Y.; Ozyilmaz, B.; Zhang, Y. B.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

8

Hod, O.; Barone, V.; Peralta, J. E.; Scuseria, G. E. Enhanced half-metallicity in edge-oxidized zigzag graphene nanoribbons. Nano Lett. 2007, 7, 2295–2299.

9

Kan, E. J.; Li, Z. Y.; Yang, J. L.; Hou, J. G. Half-metallicity in edge-modified zigzag graphene nanoribbons. J. Am. Chem. Soc. 2008, 130, 4224–4225.

10

Yang, L.; Park, C. H.; Son, Y. W.; Cohen, M. L.; Louie, S. G. Quasiparticle energies and band gaps in graphene nanoribbons. Phys. Rev. Lett. 2007, 99, 186801.

11

Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

12

Viculis, L. M.; Mack, J. J.; Kaner, R. B. A chemical route to carbon nanoscrolls. Science 2003, 299, 1361.

13

Roy, D.; Angeles-Tactay, E.; Brown, R. J. C.; Spencer, S. J.; Fry, T.; Dunton, T. A.; Young, T.; Milton, M. J. T, Synthesis and raman spectroscopic characterisation of carbon nanoscrolls. Chem. Phys. Lett. 2008, 465, 254–257.

14

Savoskin, M. V.; Mochalin, V. N.; Yaroshenko, A. P.; Lazareva, N. I.; Konstantinova, T. E.; Barsukov, I. V.; Prokofiev, I. G. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 2007, 45, 2797–2800.

15

Xie, X.; Ju, L.; Feng, X. F.; Sun, Y. H.; Zhou, R. F.; Liu, K.; Fan, S. S.; Li, Q. Q.; Jiang, K. L. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Lett. 2009, 9, 2565–2570.

16

Chen, Y.; Lu, J.; Gao, Z. X. Structural and electronic study of nanoscrolls rolled up by a single graphene sheet. J. Phys. Chem. C 2007, 111, 1625–1630.

17

Braga, S. F.; Coluci, V. R.; Baughman, R. H.; Galvao, D. S. Hydrogen storage in carbon nanoscrolls: An atomistic molecular dynamics study. Chem. Phys. Lett. 2007, 441, 78–82.

18

Braga, S. F.; Coluci, V. R.; Legoas, S. B.; Giro, R.; Galva, D. S.; Baughman, R. H. Structure and dynamics of carbon nanoscrolls. Nano Lett. 2004, 4, 881–884.

19

Coluci, V. R.; Braga, S. F.; Baughman, R. H.; Galvao, D. S. Prediction of the hydrogen storage capacity of carbon nanoscrolls. Phys. Rev. B 2007, 75, 125404.

20

Mpourmpakis, G.; Tylianakis, E.; Froudakis, G. E. Carbon nanoscrolls: A promising material for hydrogen storage. Nano Lett. 2007, 7, 1893–1897.

21

Pan, H.; Feng, Y. P.; Lin, J. Y. Ab initio study of electronic and optical properties of multiwall carbon nanotube structures made up of a single rolled-up graphite sheet. Phys. Rev. B 2005, 72, 085415.

22

Ordejon, P.; Artacho, E.; Soler, J. M. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B 1996, 53, R10441–R10444.

23

Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Mat. 2002, 14, 2745–2779.

24

Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

25

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

26

Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S.; Lambert, C.; Ferrer, J.; Sanvito, S. Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 2006, 73, 085414.

27

Rocha, A. R.; Garcia-Suarez, V. M.; Bailey, S. W.; Lambert, C. J.; Ferrer, J.; Sanvito, S. Towards molecular spintronics. Nat. Mater. 2005, 4, 335–339.

28

Martins, T. B.; da Silva, A. J. R.; Miwa, R. H.; Fazzio, A. σ- and π-defects at graphene nanoribbon edges: Building spin filters. Nano Lett. 2008, 8, 2293–2298.

29

Gunlycke, D.; Areshkin, D. A.; Li, J. W.; Mintmire, J. W.; White, C. T. Graphene nanostrip digital memory device. Nano Lett. 2007, 7, 3608–3611.

30

Enoki, T.; Kobayashi, Y. Magnetic nanographite: An approach to molecular magnetism. J. Mater. Chem. 2005, 15, 3999–4002.

31

Enoki, T.; Takai, K. Unconventional electronic and magnetic functions of nanographene-based host–guest systems. Dalton Trans. 2008, 3773–3781.

File
nr-2-11-844_ESM.pdf (249.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 July 2009
Revised: 18 August 2009
Accepted: 19 August 2009
Published: 11 November 2009
Issue date: November 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 10774003, 10474123, 10434010, 90606023, and 20731160012), National 973 Projects (No. 2007CB936200, Ministry of Science and Technology (MOST) of China), Program for New Century Excellent Talents in University of Ministry of Education (MOE) of China, the Grant-in-Aid for National Research Grid Initiative (NAREGI) Nanoscience Project from the Ministry of Education, Sports, Culture, Science and Technology (MEXT) of Japan, the Kurata Memorial Hitachi Science and Technology Foundation, and Nebraska Research Initiative (No. 4132050400) of USA.

Rights and permissions

This article is published with open access at Springerlink.com

Return