Journal Home > Volume 2 , Issue 10

The organization of carbon nanotubes into well-defined straight or curved geometries and arrays on surfaces is a critical prerequisite for their integration into nanocircuits and a variety of functional nanosystems. We review the recent development of a new approach to carbon nanotube organization based on self-organized growth directed by well-defined crystal surfaces, or "nanotube epitaxy". We identify three different modes of surface-directed growth, namely by atomic rows, atomic steps, and nanofacets. Particular emphasis is given here to the combinations of such surface-directed growth with external forces—like those exerted by an electric field or gas flow—for the creation of well-defined complex geometries, including crossbar architectures, serpentines, and coils.


menu
Abstract
Full text
Outline
About this article

Self-Organized Growth of Complex Nanotube Patterns on Crystal Surfaces

Show Author's information Ernesto Joselevich( )
Department of Materials and InterfacesWeizmann Institute of ScienceRehovot76100Israel

Abstract

The organization of carbon nanotubes into well-defined straight or curved geometries and arrays on surfaces is a critical prerequisite for their integration into nanocircuits and a variety of functional nanosystems. We review the recent development of a new approach to carbon nanotube organization based on self-organized growth directed by well-defined crystal surfaces, or "nanotube epitaxy". We identify three different modes of surface-directed growth, namely by atomic rows, atomic steps, and nanofacets. Particular emphasis is given here to the combinations of such surface-directed growth with external forces—like those exerted by an electric field or gas flow—for the creation of well-defined complex geometries, including crossbar architectures, serpentines, and coils.

Keywords: self-assembly, Nanotubes, nanostructures, nanofabrication, self-organization, surface science

References(57)

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56-58.

2
Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. Carbon nanotubes: Advanced topics in the synthesis, structure, properties and applications, series: Top. Appl. Phys., vol 111. Springer, 2008.https://doi.org/10.1007/978-3-540-72865-8
DOI
3

Service, R. F. Assembling nanocircuits from the bottom up. Science 2001, 293, 782-785.

4

Liu, J.; Casavant, M. J.; Cox, M.; Walters, D. A.; Boul, P.; Lu, W.; Rimberg, A. J.; Smith, K. A.; Colbert, D. T.; Smalley, R. E. Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates. Chem. Phys. Lett. 1999, 303, 125-129.

5

Diehl, M. R.; Yaliraki, S. N.; Beckman, R. A.; Barahona, M.; Heath, J. R. Self-assembled, deterministic carbon nanotube wiring networks. Angew. Chem. Int. Ed. 2002, 41, 353-356.

DOI
6

Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344-347.

7

Joselevich, E.; Lieber, C. M. Vectorial growth of metallic and semiconducting single-wall carbon nanotubes. Nano Lett. 2002, 2, 1137-1141.

8

Huang, S. M.; Cai, X. Y.; Liu, J. Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. J. Am. Chem. Soc. 2003, 125, 5636-5637.

9

Joselevich, E.; Dai, H. J.; Liu, J.; Hata, K.; Windle, A. H. Carbon nanotube synthesis and organization. Top. Appl. Phys. 2008, 111, 101-164.

10

Hooks, D. E.; Fritz, T.; Ward, M. D. Epitaxy and molecular organization on solid substrates. Adv. Mater. 2001, 13, 227-241.

DOI
11

Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554-11555.

12

Smalley, R. E.; Li, Y. B.; Moore, V. C.; Price, B. K.; Colorado, R.; Schmidt, H. K.; Hauge, R. H.; Barron, A. R.; Tour, J. M. Single wall carbon nanotube amplification: En route to a type-specific growth mechanism. J. Am. Chem. Soc. 2006, 128, 15824-15829.

13

Wang, Y. H.; Kim, M. J.; Shan, H. W.; Kittrell, C.; Fan, H.; Ericson, L. M.; Hwang, W. F.; Arepalli, S.; Hauge, R. H.; Smalley, R. E. Continued growth of single-walled carbon nanotubes. Nano Lett. 2005, 5, 997-1002.

14

Kim, M. J.; Haroz, E.; Wang, Y.; Shan, H.; Nicholas, N.; Kittrell, C.; Moore, V. C.; Jung, Y.; Luzzi, D.; Wheeler, R.; BensonTolle, T.; Fan, H.; Da, S.; Hwang, W. F.; Wainerdi, T. J.; Schmidt, H.; Hauge, R. H.; Smalley, R. E. Nanoscopically flat open-ended single-walled carbon nanotube substrates for continued growth. Nano Lett. 2007, 7, 15-21.

15

Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Fullerene pipes. Science 1998, 280, 1253-1256.

16

Su, M.; Li, Y.; Maynor, B.; Buldum, A.; Lu, J. P.; Liu, J. Lattice-oriented growth of single-walled carbon nanotubes. J. Phys. Chem. B 2000, 104, 6505-6508.

17

Tominaga, M.; Ohira, A.; Kubo, A.; Taniguchi, I.; Kunitake, M. Growth of carbon nanotubes on a gold (111) surface using two-dimensional iron oxide nano-particle catalysts derived from iron storage protein. Chem. Commun. 2004, 1518-1519.

18

Derycke, V.; Martel, R.; Radosvljevic, M.; Ross, F. M. R.; Avouris, P. Catalyst-free growth of ordered single-walled carbon nanotube networks. Nano Lett. 2002, 2, 1043-1046.

19

Ruppalt, L. B.; Albrecht, P. M.; Lyding, J. W. Atomic resolution scanning tunneling microscope study of single-wailed carbon nanotubes on GaAs(110). J. Vac. Sci. Technol. B 2004, 22, 2005-2007.

20

Ruppalt, L. B.; Albrecht, P. M.; Lyding, J. W. UHV-STM study of single-walled carbon nanotubes applied to the GaAs(110) and InAs(110) surfaces. J. Phys. IV 2006, 132, 31-34.

21

Ismach, A.; Segev, L.; Wachtel, E.; Joselevich, E. Atomic-step-templated formation of single wall carbon nanotube patterns. Angew. Chem. Int. Ed. 2004, 43, 6140-6143.

22

Han, S.; Liu, X. L.; Zhou, C. W. Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. J. Am. Chem. Soc. 2005, 127, 5294-5295.

23

Ago, H.; Nakamura, K.; Ikeda, K.; Uehara, N.; Ishigami, N.; Tsuji, M. Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433-438.

24

Ago, H.; Uehara, N.; Ikeda, K.; Ohdo, R.; Nakamura, K.; Tsuji, M. Synthesis of horizontally-aligned single-walled carbon nanotubes with controllable density on sapphire surface and polarized Raman spectroscopy. Chem. Phys. Lett. 2006, 421, 399-403.

25

Yu, Q. K.; Qin, G. T.; Li, H.; Xia, Z. H.; Nian, Y. B.; Pei, S. S. Mechanism of horizontally aligned growth of single-wall carbon nanotubes on r-plane sapphire. J. Phys. Chem. B 2006, 110, 22676-22680.

26

Liu, X. L.; Han, S.; Zhou, C. W. Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. Nano Lett. 2006, 6, 34-39.

27

Maret, M.; Hostache, K.; Schouler, M. C.; Marcus, B.; Roussel-Dherbey, F.; Albrecht, M.; Gadelle, P. Oriented growth of single-walled carbon nanotubes on a MgO(001) surface. Carbon 2007, 45, 180-187.

28

Souza, M.; Jorio, A.; Fantini, C.; Neves, B. R. A.; Pimenta, M. A.; Saito, R.; Ismach, A.; Joselevich, E.; Brar, V. W.; Samsonidze, G. G.; Dresselhaus, G.; Dresselhaus, M. S. Single- and double-resonance Raman G-band processes in carbon nanotubes. Phys. Rev. B 2004, 69, 241403.

29
Ismach, A.; Kantorovich, D.; Berson, J.; Geblinger, N.; Segev, L.; Wachtel, E.; Son, H.; Jorio, A.; Dresselhaus, M. S.; Dresselhaus, G.; Joselevich, E. Epitaxial modes of carbon nanotube growth on vicinal α-Al2O3 (0001) surfaces. Unpublished.
30

Kocabas, C.; Hur, S. H.; Gaur, A.; Meitl, M. A.; Shim, M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110-1116.

31

Kocabas, C.; Shim, M.; Rogers, J. A. Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. J. Am. Chem. Soc. 2006, 128, 4540-4541.

32

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879-17886.

33

Yuan, D.; Ding, L.; Chu, H. B.; Feng, Y. Y.; McNicholas, T. P.; Liu, J. Horizontally aligned single-walled carbon nanotube on quartz from a large variety of metal catalysts. Nano Lett. 2008, 8, 2576-2579.

34

Ding, L.; Tselev, A.; Wang, J. Y.; Yuan, D. N.; Chu, H. B.; McNicholas, T. P.; Li, Y.; Liu, J. Selective growth of well-aligned semiconducting single-wall carbon nanotubes. Nano Lett. 2009, 9, 800-805.

35

Smith, H. I.; Flanders, D. C. Oriented crystal-growth on amorphous substrates using artificial surface-relief gratings. Appl. Phys. Lett. 1978, 32, 349-350.

36

Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Graphoepitaxy of spherical domain block copolymer films. Adv. Mater. 2001, 13, 1152-1155.

DOI
37

Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 2000, 289, 94-97.

38

Refael, G.; Heo, J. S; Bockrath, M. Sagnac interference in carbon nanotube loops. Phys. Rev. Lett. 2007, 98, 246803.

39

Ismach, A.; Joselevich, E. Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. Nano Lett. 2006, 6, 1706-1710.

40
Geblinger, N. MSc Thesis, Weizmann Institute of Science, Israel, 2008.
41

Gebliner, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nat. Nanotechnol. 2008, 3, 195-200.

42

Wang, Y. H.; Maspoch, D.; Zou, S. L.; Schatz, G. C.; Smalley, R. E.; Mirkin, C. A. Controlling the shape, orientation, and linkage of carbon nanotube features with nano affinity templates. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 2026-2031.

43

Tsukruk, V. V.; Ko, H.; Peleshanko, S. Nanotube surface arrays: Weaving, bending, and assembling on patterned silicon. Phys. Rev. Lett. 2004, 92, 065502.

44

Duggal, R.; Pasquali, M. Dynamics of individual single-walled carbon nanotubes in water by real-time visualization. Phys. Rev. Lett. 2006, 96, 246104.

45

Hertel, T.; Walkup, R. E.; Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870-13873.

46

Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418-2421.

47

Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Drying-mediated self-assembly of nanoparticles. Nature 2003, 426, 271-274.

48

Nicolis, G.; Prigogine, I. Self-Organization in Non-Equilibrium Systems: From Dissipative Structures to Order Through Fluctuations; John Wiley: New York, 1977.

49

Kurin-Csorgei, K.; Epstein, I. R.; Orban, M. Systematic design of chemical oscillators using complexation and precipitation equilibria. Nature 2005, 433, 139-142.

50

Bachtold, A.; Fuhrer, M. S.; Plyasunov, S.; Forero, M.; Anderson, E. H.; Zettl, A.; McEuen, P. L.; Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 2000, 84, 6082-6085.

51

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

52

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230-236.

53

Wang, Y.; Kempa, K.; Kimball, B.; Carlson, J. B.; Benham, G.; Li, W. Z.; Kempa, T.; Rybczynski, J.; Herczynski, A.; Ren, Z. F. Receiving and transmitting light-like radio waves: Antenna effect in arrays of aligned carbon nanotubes. Appl. Phys. Lett. 2004, 85, 2607-2609.

54

Springel, V.; Frenk, C. S.; White, S. D. M. The large-scale structure of the universe. Nature 2006, 440, 1137-1144.

55

Werner, B. T.; Complexity in natural landform patterns. Science 1999, 284, 102-104.

56

Vollbrecht, E.; Springer, P. S.; Goh, L.; Buckler, E. S.; Martienssen, R. Architecture of floral branch systems in maize and related grasses. Nature 2005, 436, 1119-1126.

57

Lumelsky, N.; Blondel, O.; Laeng, P.; Velasco, I.; Ravin, R.; McKay, R. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 2001, 292, 1389-1394.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 April 2009
Revised: 11 June 2009
Accepted: 11 August 2009
Published: 22 October 2009
Issue date: October 2009

Copyright

© Tsinghua University Press and Springer-Verlag. This article is published with open access at Springerlink.com 2009

Acknowledgements

Acknowledgements

First and foremost, I would like to thank all the students and collaborators, whose work is reviewed here: Ariel Ismach, Noam Geblinger, Lior Segev, David Kantorovich, Hyungbin Son, Mildred M. Dresselhaus, Gene Dresselhaus, L. Gustavo Cançado, Ado Jorio, and Lukas Novotny. This research was supported by the Israel Science Foundation, the US-Israel Binational Science Foundation, the Helen and Martin Kimmel Center for Nanoscale Science, and the Legrain, Djanogly, Alhadeff and Perlman foundations.

Rights and permissions

Return