Journal Home > Volume 2 , Issue 9

The controlled etching of graphite and graphene by catalytic hydrogenation is potentially a key engineering route for the fabrication of graphene nanoribbons with atomic precision. The hydrogenation mechanism, though, remains poorly understood. In this study we exploit the benefits of aberration-corrected high-resolution transmission electron microscopy to gain insight to the hydrogenation reaction. The etch tracks are found to be commensurate with the graphite lattice. Catalyst particles at the head of an etch channel are shown to be faceted and the angles between facets are multiples of 30°. Thus, the angles between facets are also commensurate with the graphite lattice. In addition, the results of a post-annealing step suggest that all catalyst particles—even if they are not involved in etching—are actively forming methane during the hydrogenation reaction. Furthermore, the data point against carbon dissolution being a key mechanism during the hydrogenation process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Shedding Light on the Crystallographic Etching of Multi-Layer Graphene at the Atomic Scale

Show Author's information Franziska Schäffel1( )Jamie H. Warner2Alicja Bachmatiuk1Bernd Rellinghaus1Bernd Büchner1Ludwig Schultz1Mark H. Rümmeli1
IFW Dresden P.O. Box 270116 D-01171 Dresden Germany
Department of Materials University of OxfordParks Rd. Oxford OX1 3PH United Kingdom

Abstract

The controlled etching of graphite and graphene by catalytic hydrogenation is potentially a key engineering route for the fabrication of graphene nanoribbons with atomic precision. The hydrogenation mechanism, though, remains poorly understood. In this study we exploit the benefits of aberration-corrected high-resolution transmission electron microscopy to gain insight to the hydrogenation reaction. The etch tracks are found to be commensurate with the graphite lattice. Catalyst particles at the head of an etch channel are shown to be faceted and the angles between facets are multiples of 30°. Thus, the angles between facets are also commensurate with the graphite lattice. In addition, the results of a post-annealing step suggest that all catalyst particles—even if they are not involved in etching—are actively forming methane during the hydrogenation reaction. Furthermore, the data point against carbon dissolution being a key mechanism during the hydrogenation process.

Keywords: nanoparticles, Graphene, graphene nanoribbons, catalytic hydrogenation

References(46)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200.

3

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

4

Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semi-conductors. Science 2008, 319, 1229–1232.

5

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 2006, 97, 216803.

6

Brey, L; Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B 2006, 73, 235411.

7

Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 2007, 98, 206805.

8

Chen, Z.; Lin, Y. -M.; Rooks, M. J.; Avouris, P. Graphene nano-ribbon electronics. Physica E 2007, 40, 228–232.

9

Son, Y. -W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

10

Fernández-Rossier, J.; Palacios, J. J. Magnetism in graphene nanoislands. Phys. Rev. Lett. 2007, 99, 177204.

11

Wang, W. L.; Meng, S.; Kaxiras, E. Graphene nanoflakes with large spin. Nano Lett. 2008, 8, 241–245.

12

Kobayashi, Y.; Fukui, K. -I.; Enoki, T.; Kusakabe, K.; Kaburagi, Y. Observation of zigzag and armchair edges of graphite using scanning tunneling microscopy and spectroscopy. Phys. Rev. B 2005, 71, 193406.

13

Zhao, P.; Choudhury, M.; Mohanram, K.; Guo, J. Computational model of edge effects in graphene nanoribbon transistors. Nano Res. 2008, 1, 395–402.

14

Tapasztó, L.; Dobrik, G.; Lambin, P.; Biró, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunnelling microscope lithography. Nat. Nanotechnol. 2008, 3, 397–401.

15

Cresti, A.; Nemec, N.; Biel, B.; Niebler, G.; Triozon, F.; Cuniberti, G.; Roche, S. Charge transport in disordered graphene-based low dimensional materials. Nano Res. 2008, 1, 361–394.

16

Schniepp, H. C.; Li, J. -L.; McAllister, M. J.; Saki, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535–8539.

17

Yu, A.; Ramesh, P.; Itkis, M. E.; Bekyarova, E.; Haddon, R. C. Graphite nanoplatelet-epoxy composite thermal interface materials. J. Phys. Chem. C 2007, 111, 7565–7569.

18

Datta, S. S.; Strachan, D. R.; Khamis, S. M.; Johnson, A. T. C. Crystallographic etching of few-layer graphene. Nano Lett. 2008, 8, 1912–1915.

19

Ci, L.; Xu, Z.; Wang, L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

20

Tomita, A.; Tamai, Y. An optical microscopic study on the catalytic hydrogenation of graphite. J. Phys. Chem. 1974, 78, 2254–2258.

21

Konishi, S.; Sugimoto, W.; Murakami, Y.; Takasu, Y. Catalytic creation of channels in the surface layers of highly oriented pyrolytic graphite by cobalt nanoparticles. Carbon 2006, 44, 2338–2340.

22

Harris, P. S.; Feates, F. S.; Reuben, B. G. Controlled atmosphere electron microscopy studies of graphite gasification — 4. Catalysis of the graphite-O2 reaction by silver. Carbon 1974, 12, 189–197.

23

Yang, R. T.; Wong, C. Catalysis of carbon oxidation by transition metal carbides and oxides. J. Catal. 1984, 85, 154–168.

24

Goethel, P. J.; Yang, R. T. Mechanism of catalyzed graphite oxidation by monolayer channeling and monolayer edge recession. J. Catal. 1989, 119, 201–214.

25

Pan, Z. J.; Yang, R. T. Catalytic behavior of transition metal oxide in graphite gasification by oxygen, water and carbon dioxide. J. Catal. 1991, 130, 161–172.

26

Chen, S. G.; Yang, R. T. Mechanism of alkali and alkaline earth catalyzed gasification of graphite by CO2 and H2O studied by electron microscopy. J. Catal. 1992, 138, 12–23.

27

Huang, H. Y.; Yang, R. T. Catalyzed carbon–NO reaction studied by scanning tunneling microscopy and ab initio molecular orbital calculations. J. Catal. 1999, 185, 286–296.

28

Tomita, A; Tamai, Y. Hydrogenation of carbons catalyzed by transition metals. J. Catal. 1972, 27, 293–300.

29

Rewick, R. T.; Wentrcek, P. R.; Wise, H. Carbon gasification in the presence of metal catalysts. Fuel 1974, 53, 274–279.

30

Keep, C. W.; Terry, S.; Wells, M. Studies of the nickel catalyzed hydrogenation of graphite. J. Catal. 1980, 66, 451–462.

31

Goethel, P. J.; Yang, R. T. Platinum-catalyzed hydrogenation of graphite: Mechanism studied by the rates of monolayer channelling. J. Catal. 1986, 101, 341–351.

32

Goethel, P. J.; Yang, R. T. Mechanism of graphite hydrogenation catalyzed by nickel. J. Catal. 1987, 108, 356–363.

33

Goethel, P. J.; Yang, R. T. Mechanism of graphite hydrogenation catalyzed by ruthenium particles. J. Catal. 1988, 111, 220–226.

34

Schäffel, F.; Kramberger, C.; Rümmeli, M. H.; Kaltofen, R.; Grimm, D.; Grüneis, A.; Mohn, E.; Gemming, T.; Pichler, T.; Büchner, B.; Rellinghaus, B.; Schultz, L. Carbon nanotubes grown from individual gas phase prepared iron catalyst particles. Phys. Stat. Sol. A 2007, 204, 1786–1790.

35

Schäffel, F.; Kramberger, C.; Rümmeli, M. H.; Grimm, D.; Mohn, E.; Gemming, T. Pichler, T.; Rellinghaus, B.; Büchner, B.; Schultz, L. Nanoengineered catalyst particles as a key for tailor-made carbon nanotubes. Chem. Mater. 2007, 19, 5006–5009.

36

Takasu, Y.; Konishi, S.; Miyoshi, R.; Nukii, K.; Matsuse, T.; Sugimoto, W.; Murakami, Y. Catalytic linear grooving of graphite surface layers by Pt, Ru, and PtRu nanoparticles. Chem. Lett. 2005, 34, 1008–1009.

37

Baker, R. T. K.; Harris, P. S.; Thomas, R. B. Direct observation of particle mobility on a surface in a gaseous environment. Surf. Sci. 1974, 46, 311–316.

38

Baker, R. T. K. In situ electron microscopy studies of catalyst particle behavior. Catal. Rev. -Sci. Eng. 1979, 19, 161–209.

39

Chang, H.; Brad, A. J. Scanning tunneling microscopy studies of carbon-oxygen reactions on highly oriented pyrolytic graphite. J. Am. Chem. Soc. 1991, 113, 5588–5596.

40

Severin, N.; Kirstein, S.; Sokolov, I. M.; Rabe, J. P. Rapid trench channeling of graphenes with catalytic silver nanoparticles. Nano Lett. 2009, 9, 457–461.

41

Hennig, G. R. Catalytic oxidation of graphite. J. Inorg. Nucl. Chem. 1962, 24, 1129–1132.

42

Delzeit, L.; Nguyen, C. V.; Chen, B.; Stevens, R.; Cassell, A.; Han, J.; Meyyappan, M. Multiwalled carbon nanotubes by chemical vapor deposition using multilayered metal catalysts. J. Phys. Chem. B 2002, 106, 5629–5635.

43

Cortie, M. B.; van der Lingen, E. Catalytic gold nano-particles. Mater. Forum 2002, 26, 1–14.

44

Rümmeli, M. H.; Schäffel, F.; Kramberger, C.; Gemming, T. Bachmatiuk, A.; Kalenczuk, R. J.; Rellinghaus, B.; Büchner, B.; Pichler, T. Oxide-driven carbon nanotube growth in supported catalyst CVD. J. Am. Chem. Soc. 2007, 129, 15772–15773.

45

Warner, J. H.; Schäffel, F.; Zhong, G.; Rümmeli, M. H.; Büchner, B.; Robertson, J.; Briggs, G. A. D. Investigating the diameter dependent stability of single-walled carbon nanotubes. ACS Nano 2009, 3, 1557–1563.

46

Campos, L. C.; Manfrinato, V. R.; Sanchez-Yamagishi, J. D.; Kong, J.; Jarillo-Herrero, P. Anisotropic etching and nanoribbon formation in single-layer graphene. Nano Lett. 2009, 9, 2600–2604.

File
nr-2-9-695_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 08 June 2009
Revised: 17 July 2009
Accepted: 17 July 2009
Published: 12 September 2009
Issue date: September 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

F.S. acknowledges funding from the Cusanuswerk. J. H. W. thanks the Glasstone Fund and Brasenose College for support. A. B. thanks the DFG RU1540/4-1.

Rights and permissions

This article is published with open access at Springerlink.com

Return