Journal Home > Volume 2 , Issue 9

Chemistry gives us the ability to manipulate atoms and molecules into nanometer and micrometer scale building blocks, while the science of crystallography is concerned with the spatial arrangement of atoms, ions, and molecules and thus the morphology and structures of materials. Complex three-dimensional ZnS nanostructures have been fabricated via step-by-step crystallographically-controlled chemical processes. Tricrystals of ZnS whiskers were prepared via a controlled thermal evaporation process, and then the tricrystals were thermally treated in an atmosphere formed by evaporating B–N–O precursors into N2/NH3 to afford BN-coated arrays of nanobranches. The ZnS nanobranches grew epitaxially on the ternary facets and extended in three [0001] directions forming ordered nanostructures. Meanwhile, the protecting insulating sheath of BN formed on the ZnS nanostructures confined the growth of the nanospines and enhanced their stability. The method may be extended to fabricate other semiconductor nanomaterials with novel structures.


menu
Abstract
Full text
Outline
About this article

Crystallographically-Oriented Nanoassembly by ZnS Tricrystals and Subsequent Three-Dimensional Epitaxy

Show Author's information Yingchun Zhu( )Qichao RuanFangfang Xu
The Key Laboratory of Inorganic Coating Materials Shanghai Institute of Ceramics Chinese Academy of SciencesShanghai 200050 China

Abstract

Chemistry gives us the ability to manipulate atoms and molecules into nanometer and micrometer scale building blocks, while the science of crystallography is concerned with the spatial arrangement of atoms, ions, and molecules and thus the morphology and structures of materials. Complex three-dimensional ZnS nanostructures have been fabricated via step-by-step crystallographically-controlled chemical processes. Tricrystals of ZnS whiskers were prepared via a controlled thermal evaporation process, and then the tricrystals were thermally treated in an atmosphere formed by evaporating B–N–O precursors into N2/NH3 to afford BN-coated arrays of nanobranches. The ZnS nanobranches grew epitaxially on the ternary facets and extended in three [0001] directions forming ordered nanostructures. Meanwhile, the protecting insulating sheath of BN formed on the ZnS nanostructures confined the growth of the nanospines and enhanced their stability. The method may be extended to fabricate other semiconductor nanomaterials with novel structures.

Keywords: ZnS tricrystal, crystallograpically-controlled chemical process, nanoassembly, three-dimensional epitaxy

References(34)

1

Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.; Wang, L. W.; Alivisatos, A. P. Colloidal nanocrystal heterostructures with linear and branched topology. Nature 2004, 430, 190–195.

2

Lee, K. B.; Park, S.; Mirkin, C. A. Multicomponent magnetic nanorods for biomolecular separations. Angew. Chem. Int. Ed. 2004, 43, 3048–3050.

3

Polyakov, B.; Daly, B.; Prikulis, J.; Lisauskas, V.; Vengalis, B.; Morris, M. A.; Holmes, J. D.; Erts, D. High-density arrays of germanium nanowire photoresistors. Adv. Mater. 2006, 18, 1812–1816.

4

Hayden, O.; Agarwal, R.; Lieber, C. M. Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 2006, 5, 352–356.

5

Verheijen, M. A.; Immink, G.; de Smet, T.; Borgstrom, M. T.; Bakkers, E. P. A. M. Growth kinetics of heterostructured GaP-GaAs nanowires. J. Am. Chem. Soc. 2006, 128, 1353–1359.

6

Zhu, Y.C.; Fujiwara, M. Installing dynamic molecular photomechanics in mesopores: A multifunctional controlled-release nanosystem. Angew. Chem. Int. Ed. 2007, 46, 2241–2244.

7

Haas, I.; Gedanken, A. Synthesis of metallic magnesium nanoparticles by sonoelectrochemistry. Chem. Comm. 2008, 1795–1797.

8

Hong, S.; Mirkin, C. A. A nanoplotter with both parallel and serial writing capabilities. Science 2000, 288, 1808–1811.

9

Loo, Y.L.; Willett, R.; Baldwin, K. W.; Rogers, J. A. Interfacial chemistries for nanoscale transfer printing. J. Am. Chem. Soc. 2002, 124, 7654–7655.

10

Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

11

Yan, H. Q.; He, R. G.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. D. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 2003, 125, 4728–4729.

12

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

13

Zhu, Y. C.; Bando, Y.; Xue, D. F.; Golberg, D. Oriented assemblies of ZnS one-dimentional nanostructures. Adv. Mater. 2004, 16, 831–834.

14

Zhu, Y. C.; Bando, Y.; Xue, D.F.; Golberg, D. Nanocable-aligned ZnS tetrapod nanocrystals. J. Am. Chem. Soc. 2003, 125, 16196–16197.

15

Biswas, S.; Ghoshal T.; Kar S.; Chakrabarti S.; Chaudhuri S. ZnS nanowire arrays: Synthesis, optical and field emission properties. Cryst. Growth Des. 2008, 8, 2171–2176.

16

Biswas S.; Kar S.; Chaudhuri S.; Nambissan, P. M. G. Positron annihilation studies of defects and interfaces in ZnS nanostructures of different crystalline and morphological features. J. Chem. Phys. 2006, 125, 164719.

17

Xiong, Q.; Chen, G.; Acord, J. D.; Liu, X.; Zengel, J. J.; Gutierrez, H. R.; Redwing, J. M.; Voon, L. C. L. Y.; Lassen, B.; Eklund, P. C. Optical properies of rectangular cross-sectional ZnS nanowires. Nano Lett. 2004, 4, 1663–1668.

18

Yamamoto, T.; Kishimoto, S.; Iida, S. Control of valence states for ZnS by triple-codoping method. Physica B 2001, 308, 916–919.

19

Prevenslik, T. V. Acoustoluminescence and sonoluminescence. J. Lumin. 2000, 8789, 1210–1212.

20

Falcony, C.; Garcia, M.; Ortiz, A.; Alonso, J.C. Luminescent properties of ZnS: Mn films deposited by spray pyrolysis. J. Appl. Phys. 1992, 72, 1525–1527.

21

Fan, X.; Meng, X. M.; Zhang, X. H.; Shi, W. S.; Zhang, W. J.; Zapien, J. A.; Lee, C. S.; Lee, S. T. Dart-shaped tricrystal ZnS nanoribbons. Angew. Chem. Int. Ed. 2006, 45, 2568–2571.

22

Ma, C.; Moore, D.; Li, J.; Wang, Z. L. Nanobelts, nanocombs and nanowindmills of wurtzite ZnS. Adv. Mater. 2003, 15, 228–231.

23

Gautam, U. K.; Fang, X. S.; Bando, Y.; Zhan, J. H.; Golberg, D. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures. ACS Nano 2008, 2, 1015–1021.

24

Zhu, Y. C.; Bando, Y.; Xue, D. F. Spontaneous growth and luminescence of zinc sulfide nanotubes. Appl. Phys. Lett. 2003, 82, 1769–1771.

25

Zhu, Y. C.; Bando, Y. ZnS–Zn nanocables and ZnS nanotubes. Chem. Comm. 2003, 836–837.

26

Li, Q.; Wang, C. R. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett. 2003, 82, 1398–1370.

27

Zhu, Y.C.; Bando, Y. Preparation and photoluminescence of single-crystal zinc selenide nanowires. Chem. Phys. Lett. 2003, 377, 367–370.

28

Rana, R. K.; Zhang, L. Z.; Yu, J. C.; Mastai, Y.; Gedanken, A. Mesoporous structures from supramolecular assembly of in situ generated ZnS nanoparticles. Langmuir 2003, 19, 5904–5911.

29

Yu, S. H.; Yoshimura, M. Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv. Mater. 2002, 14, 296–300.

DOI
30

Xiong, S. I.; Xi, B. J.; Wang, C. M.; Xu, D.; Feng, X. M.; Zhu, Z. C.; Qian, Y. T. Tunable synthesis of various wurtzite ZnS architectural structures and their photocatalytic properties. Adv. Funct. Mater. 2007, 17, 2728–2738.

31

Jiang, Y.; Meng, X. M.; Liu, J.; Xie, Z. Y.; Lee, C. S.; Lee, S. T. Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale. Adv. Mater. 2003, 15, 323–326.

32

Zhu, Y. C.; Bando, Y.; Xue, D. F.; Xu, F. F.; Golberg, D. Insulation tubular BN sheating on semiconducting nanowires. J. Am. Chem. Soc. 2003, 125, 14226–14227.

33

Zhu, Y. C.; Bando, Y.; Yin, L. W. Design and fabrication of BN-sheathed ZnS nanoarchitectures. Adv. Mater. 2004, 16, 331–334.

34

Brown I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. B 1985, 41, 244–247.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 April 2009
Revised: 19 May 2009
Accepted: 08 July 2009
Published: 12 September 2009
Issue date: September 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

Y. Z. acknowledges financial support from the National Natural Science Foundation of China (20571082, 50772125), and the Science and Technology Commission of Shanghai (08JC1420700).

Rights and permissions

This article is published with open access at Springerlink.com

Return