Journal Home > Volume 2 , Issue 9

Four new ruthenium phthalocyanine complexes bearing axial ligands with thioacetate groups that facilitate thin film formation on gold surfaces are presented. Scanning tunnelling microscopy (STM) images and surface coverage data obtained by solution inductively coupled plasma mass spectrometry (ICP-MS) experiments show that peripheral and axial ligand substituents on the complexes have a significant effect on their surface coverage. A laser ablation ICP-MS technique that provides information about thin films across macro-sized areas is described here for the first time. Using the technique, the maximum surface coverage of a ruthenium phthalocyanine complex was found to occur within one minute of gold substrate immersion in the complex-containing solution.


menu
Abstract
Full text
Outline
About this article

Thin Films of Ruthenium Phthalocyanine Complexes

Show Author's information Tristan RawlingChristine E. AustinDominic HarePhilip A. DobleHadi M. ZareieAndrew M. McDonagh( )
Institute for Nanoscale Technology University of Technology SydneySydney NSW 2007 Australia

Abstract

Four new ruthenium phthalocyanine complexes bearing axial ligands with thioacetate groups that facilitate thin film formation on gold surfaces are presented. Scanning tunnelling microscopy (STM) images and surface coverage data obtained by solution inductively coupled plasma mass spectrometry (ICP-MS) experiments show that peripheral and axial ligand substituents on the complexes have a significant effect on their surface coverage. A laser ablation ICP-MS technique that provides information about thin films across macro-sized areas is described here for the first time. Using the technique, the maximum surface coverage of a ruthenium phthalocyanine complex was found to occur within one minute of gold substrate immersion in the complex-containing solution.

Keywords: gold, surface, laser ablation, Ruthenium, phthalocyanine

References(31)

1

Nakamura, T. Electrochemical biosensors in nonaqueous solutions and their applications. Anal. Sci. 2007, 23, 253–259.

2

Mathiyarasu, J.; Pathak, S. S.; Yegnaraman, V. Review on corrosion prevention of copper using ultrathin organic monolayers. Corros. Rev. 2006, 24, 307–321.

3

Smith, R. K.; Lewis, P. A.; Weiss, P. S. Patterning self-assembled monolayers. Prog. Surf. Sci. 2004, 75, 1–68.

4

Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169.

5

Rawling, T.; McDonagh, A. M. Ruthenium phthalocyanine and naphthalocyanine complexes: Synthesis, properties and applications. Coord. Chem. Rev. 2007, 251, 1128–1157.

6

Lucas, N. T.; Zareie, H. M.; McDonagh, A. M. Self-organization of a discotic coordination complex bearing orthogonal discotic ligands. ACS Nano 2007, 1, 348–354.

7

Huc, V.; Armand, F.; Bourgoin, J. P.; Palacin, S. Covalent anchoring of phthalocyanines on silicon dioxide surfaces: Building up mono- and multilayers. Langmuir 2001, 17, 1928–1935.

8

Huc, V.; Bourgoin, J. -P.; Bureau, C.; Valin, F.; Zalczer, G.; Palacin, S. Self-assembled mono- and multilayers on gold from 1, 4-diisocyanobenzene and ruthenium phthalocyanine. J. Phys. Chem. B 1999, 103, 10489–10495.

9

Huc, V.; Saveyroux, M.; Bourgoin, J. -P.; Valin, F.; Zalczer, G.; Albouy, P. -A.; Palacin, S. Grafting ruthenium phthalocyanine on gold and silica: Using apical ligands as linker. Langmuir 2000, 16, 1770–1776.

10

Li, X.; Xu, W.; Wang, X.; Jia, H.; Zhao, B.; Li, B.; Ozaki, Y. Ultraviolet–visible and surface-enhanced Raman scattering spectroscopy studies on self-assembled films of ruthenium phthalocyanine on organic monolayer-modified silver substrates. Thin Solid Films 2004, 457, 372–380.

11

Lei, S.; DeFeyter, S. STM, STS and bias-dependent imaging on organic monolayers at the solid-liquid interface. Top. Curr. Chem. 2008, 285, 269–312.

12

Vericat, C.; Vela, M. E.; Benitez, G. A.; Gago, J. A. M.; Torrelles, X.; Salvarezza, R. C. Surface characterization of sulfur and alkanethiol self-assembled monolayers on Au(111). J. Phys. : Condens. Matter 2006, 18, R867–R900.

13

Russo, R. E.; Mao, X.; Liu, H.; Gonzalez, J.; Mao, S. S. Laser ablation in analytical chemistry—A review. Talanta 2002, 57, 425–451.

14

Mrksich, M. Mass spectrometry of self-assembled monolayers: A new tool for molecular surface science. ACS Nano 2008, 2, 7–18.

15

Narine, S. S.; Hughes, R.; Slavin, A. J. The use of inductively coupled plasma mass spectrometry to provide an absolute measurement of surface coverage, and comparison with the quartz crystal microbalance. Appl. Surf. Sci. 1999, 137, 204–206.

16

Pritzkow, W.; Vogl, J.; Berger, A.; Ecker, K.; Groetzschel, R.; Klingbeil, P.; Persson, L.; Riebe, G.; Waetjen, U. Contribution of ICP-IDMS to the certification of antimony implanted in a silicon wafer—Comparison with RBS and INAA results. Fresenius J. Anal. Chem. 2001, 371, 867–873.

17

Li, Z.; Lieberman, M.; Hill, W. XPS and SERS study of silicon phthalocyanine monolayers: Umbrella vs. octopus design strategies for formation of oriented SAMs. Langmuir 2001, 17, 4887–4894.

18

Cheng, Z. H.; Gao, L.; Deng, Z. T.; Jiang, N.; Liu, Q.; Shi, D. X.; Du, S. X.; Guo, H. M.; Gao, H. J. Adsorption behavior of iron phthalocyanine on Au(111) surface at submonolayer coverage. J. Phys. Chem. C 2007, 111, 9240–9244.

19

Hipps, K. W.; Lu, X.; Wang, X. D.; Mazur, U. Metal d-orbital occupation-dependent images in the scanning tunneling microscopy of metal phthalocyanines. J. Phys. Chem. 1996, 100, 11207–11210.

20

Yoshimoto, S. Molecular assemblies of functional molecules on gold electrode surfaces studied by electrochemical scanning tunneling microscopy: Relationship between function and adlayer structures. Bull. Chem. Soc. Jpn. 2006, 79, 1167–1190.

21

Zheng, Z.; Yang, M.; Liu, Y.; Zhang, B. Direct patterning of negative nanostructures on self-assembled monolayers of 16-mercaptohexadecanoic acid on Au(111) substrate via dip-pen nanolithography. Nanotechnology 2006, 17, 5378–5386.

22
Equilibrium geometry optimization was achieved using the molecular mechanics method (MMFF94 force fields). Spartan'04, Wavefunction Inc., 2004, Irvine, CA, USA.
23

Rawling, T.; Xiao, H.; Lee, S. -T.; Colbran, S. B.; McDonagh, A. M. Optical and redox properties of ruthenium phthalocyanine complexes tuned with axial ligand substituents. Inorg. Chem. 2007, 46, 2805–2813.

24

Schreiber, F. Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 2000, 65, 151–256.

25

Bain, C. D.; Troughton, E. B.; Tao, Y. T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 1989, 111, 321–335.

26

Bensebaa, F.; Voicu, R.; Huron, L.; Ellis, T. H.; Kruus, E. Kinetics of formation of long-chain n-alkanethiolate monolayers on polycrystalline gold. Langmuir 1997, 13, 5335–5340.

27

Truong, K. D.; Rowntree, P. A. Kinetics of the formation of butanethiol monolayers on gold substrates, as studied by infrared spectroscopy. Prog. Surf. Sci. 1995, 50, 207–216.

28

Haehner, G.; Woell, C.; Buck, M.; Grunze, M. Investigation of intermediate steps in the self-assembly of n-alkanethiols on gold surfaces by soft X-ray spectroscopy. Langmuir 1993, 9, 1955–1958.

29

Bossard, G. E.; Abrams, M. J.; Darkes, M. C.; Vollano, J. F.; Brooks, R. C. Convenient synthesis of water soluble, isomerically pure ruthenium phthalocyanine complexes. Inorg. Chem. 1995, 34, 1524–1527.

30

Balkovec, J. M.; Szymonifka, M. J.; Heck, J. V.; Ratcliffe, R. W. Basic carbapenem analogs: Synthesis and in vitro activity of 1b-methyl-2-(pyridylmethylthio)-carbapenems. J. Antibiot. 1991, 44, 1172–1177.

31

Xu, X.; Cortie, M. B.; Stevens, M. Effect of glass pre-treatment on the nucleation of semi-transparent gold coatings. Mater. Chem. Phys. 2005, 94, 266–274.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 May 2009
Revised: 04 June 2009
Accepted: 08 July 2009
Published: 12 September 2009
Issue date: September 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was supported by the Australian Research Council (DP0984354). We thank Dr N. Lucas for Spartan molecular modeling calculations.

Rights and permissions

This article is published with open access at Springerlink.com

Return