Journal Home > Volume 2 , Issue 9

Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb films using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques. We observed novel magnetoresistance oscillations below the superconducting transition temperature (TC) of the bridges. The oscillations—which were not seen in the crystalline Pb films—may originate from the inhomogeneity of superconductivity induced by the applied magnetic fields on approaching the normal state, or the degradation of film quality by thermal evolution.


menu
Abstract
Full text
Outline
About this article

Magnetoresistance Oscillations of Ultrathin Pb Bridges

Show Author's information Jian Wang1,2( )Xucun Ma1Shuaihua Ji1Yun Qi1Yingshuang Fu1Aizi Jin1Li Lu1Changzhi Gu1X. C. Xie1,3Mingliang Tian2Jinfeng Jia1,4Qikun Xue1,4( )
Institute of Physics Chinese Academy of SciencesBeijing 100190 China
The Center for Nanoscale Science and Department of Physics The Pennsylvania State University University ParkPennsylvania 16802-6300 USA
Department of Physics Oklahoma State UniversityStillwater OK 74078 USA
Department of Physics Tsinghua UniversityBeijing 100084 China

Abstract

Pb nanobridges with a thickness of less than 10 nm and a width of several hundred nm have been fabricated from single-crystalline Pb films using low-temperature molecular beam epitaxy and focus ion beam microfabrication techniques. We observed novel magnetoresistance oscillations below the superconducting transition temperature (TC) of the bridges. The oscillations—which were not seen in the crystalline Pb films—may originate from the inhomogeneity of superconductivity induced by the applied magnetic fields on approaching the normal state, or the degradation of film quality by thermal evolution.

Keywords: molecular beam epitaxy, superconductivity, magnetoresistance, scanning tunneling microscope, Pb nanobridge, focus ion beam

References(28)

1

Sharifi, F.; Herzog, A. V.; Dynes, R. C. Crossover from two to one dimension in in situ grown wires of Pb. Phys. Rev. Lett. 1993, 71, 428–431.

2

Herzog, A. V.; Xiong, P.; Sharifi, F.; Dynes, R. C. Observation of a discontinuous transition from strong to weak localization in 1-D granular metal wires. Phys. Rev. Lett. 1996, 76, 668–671.

3

Xiong, P.; Herzog, A. V.; Dynes, R. C. Negative magnetoresistance in homogeneous amorphous superconducting Pb wires. Phys. Rev. Lett. 1997, 78, 927–930.

4

Bezryadin, A.; Lau, C. N.; Tinkham, M. Quantum suppression of superconductivity in ultrathin nanowires. Nature 2000, 404, 971–974.

5

Camarota, B.; Parage, F.; Delsing, P.; Buisson, O. Experimental evidence of one-dimensional plasma modes in superconducting thin wires. Phys. Rev. Lett. 2001, 86, 480–483.

6

Vodolazov, D. Y.; Peeters, F. M.; Piraux, L.; Mátéfi-Tempfli, S.; Michotte, S. Current–voltage characteristics of quasi-one-dimensional superconductors: An S-shaped curve in the constant voltage regime. Phys. Rev. Lett. 2003, 91, 157001.

7

Tian, M. L.; Kumar, N.; Xu, S. Y.; Wang, J. G.; Kurtz, J. S.; Chan, M. H. W. Suppression of superconductivity in zinc nanowires by bulk superconductors. Phys. Rev. Lett. 2005, 95, 076802.

8

Rogachev, A.; Bollinger, A. T.; Bezryadin, A. Influence of high magnetic fields on the superconducting transition of one-dimensional Nb and MoGe nanowires. Phys. Rev. Lett. 2005, 94, 017004.

9

Zgirski, M; Riikonen, K. -P.; Touboltsev, V.; Arutyunov, K. Size dependent breakdown of superconductivity in ultranarrow nanowires. Nano Lett. 2005, 5, 1029–1033.

10

Altomare, F; Chang, A. M.; Melloch, M. R.; Hong, Y. G.; Tu, C. W. Evidence for macroscopic quantum tunneling of phase slips in long one-dimensional superconducting Al wires. Phys. Rev. Lett. 2006, 97, 017001.

11

Guo, Y.; Zhang, Y. F.; Bao, X. Y.; Han, T. Z.; Tang, Z.; Zhang, L. X.; Zhu, W. G.; Wang, E. G.; Niu, Q.; Qiu, Z. Q.; Jia, J. F.; Zhao, Z. X.; Xue, Q. K. Superconductivity modulated by quantum size effects. Science 2004, 306, 1915–1917.

12

Chiang, T. C. Superconductivity in thin films. Science 2004, 306, 1900–1901.

13

Zhang, Y. F.; Jia, J. F.; Han, T. Z.; Tang, Z.; Shen, Q. T.; Guo, Y.; Qiu, Z. Q.; Xue, Q. K. Band structure and oscillatory electron-phonon coupling of Pb thin films determined by atomic-layer-resolved quantum-well states. Phys. Rev. Lett. 2005, 95, 096802.

14

Bao, X. Y.; Zhang, Y. F.; Wang, Y. P.; Jia, J. F.; Xue, Q. K.; Xie, X. C.; Zhao, Z. X. Quantum size effects on the perpendicular upper critical field in ultrathin lead films. Phys. Rev. Lett. 2005, 95, 247005.

15

Eom, D.; Qin, S.; Chou, M. -Y.; Shih, C. K. Persistent superconductivity in ultrathin Pb films: A scanning tunneling spectroscopy study. Phys. Rev. Lett. 2006, 96, 027005.

16

Ozer, M. M.; Thompson, J. R.; Weitering, H. H. Hard superconductivity of a soft metal in the quantum regime. Nat. Phys. 2006, 2, 173–176.

17

Wang, J.; Ma, X. C.; Qi, Y.; Fu, Y. S.; Ji, S. H.; Lu, L.; Jia, J. F.; Xue, Q. K. Negative magnetoresistance in fractal Pb thin films on Si(111). Appl. Phys. Lett. 2007, 90, 113109.

18

Wang, J.; Ma, X. C.; Qi, Y.; Fu, Y. S.; Ji, S. H.; Lu, L.; Xie, X. C.; Jia, J. F.; Chen, X.; Xue, Q. K. Unusual magnetoresistance effect in the heterojunction structure of an ultrathin single-crystal Pb film on silicon substrate. Nanotechnology 2008, 19, 475708.

19

Rogachev, A.; Bezryadin, A. Superconducting properties of polycrystalline Nb nanowires templated by carbon nanotubes. Appl. Phys. Lett. 2003, 83, 512–514.

20

Tian, M. L.; Wang, J. G.; Kurtz, J. S.; Liu, Y.; Chan, M. H. W. Dissipation in quasi-one-dimensional superconducting single-crystal Sn nanowires. Phys. Rev. B 2005, 71, 104521.

21

Shanenko, A. A.; Croitoru, M. D.; Zgirski, M.; Peeters, F. M.; Arutyunov, K. Size-dependent enhancement of superconductivity in Al and Sn nanowires: Shape-resonance effect. Phys. Rev. B 2006, 74, 052502.

22

Wang, J.; Ma, X. C.; Lu, L.; Jin, A. Z.; Gu, C. Z.; Xie, X. C.; Jia, J. F.; Chen, X.; Xue, Q. K. Anomalous magnetoresistance oscillations and enhanced superconductivity in single-crystal Pb nanobelts. Appl. Phys. Lett. 2008, 92, 233119.

23

Herzog, A. V.; Xiong, P.; Dynes, R. C. Magnetoresistance oscillations in granular Sn wires near the superconductor–insulator transition. Phys. Rev. B 1998, 58, 14199–14202.

24

Johansson, A.; Sambandamurthy, G.; Shahar, D.; Jacobson, N.; Tenne, R. Nanowires acting as a superconducting quantum interference device. Phys. Rev. Lett. 2005, 95, 116805.

25

Patel, U.; Avci, S.; Xiao, Z. L.; Hua, J.; Yu, S. H.; Ito, Y.; Divan, R.; Ocola, L. E.; Zheng, C.; Claus, H.; Hiller, J.; Welp, U.; Miller, D. J.; Kwok, W. K. Synthesis and superconducting properties of niobium nanowires and nanoribbons. Appl. Phys. Lett. 2007, 91, 162508.

26

Van der Zant, H. S. J., Webster, M. N., Romijn, J.; Mooij, J. E. Vortices in two-dimensional superconducting weakly coupled wire networks. Phys. Rev. B 1994, 50, 340–350.

27

Hopkins, D. S.; Pekker, D.; Goldbart, P. M., Bezryadin, A. Quantum interference device made by DNA templating of superconducting nanowires. Science 2005, 308, 1762–1765.

28

Pekker, D.; Bezryadin, A.; Hopkins, D. S.; Goldbart, P. M. Operation of a superconducting nanowire quantum interference device with mesoscopic leads. Phys. Rev. B 2005, 72, 104517.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 11 May 2009
Revised: 18 June 2009
Accepted: 30 June 2009
Published: 12 September 2009
Issue date: September 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We gratefully acknowledge technical support by Shao-Kui Su. We thank Dr. Lili Wang and Dr. Peng Jiang for their help in sample preparation. This work was financially supported by the National Science Foundation and the Ministry of Science and Technology of China and the Penn. State MRSEC under NSF grant DMR-0820404.

Rights and permissions

This article is published with open access at Springerlink.com

Return