Journal Home > Volume 2 , Issue 8

The possibility of delivering DNA efficiently to cells represents a crucial issue for the treatment of both genetic and acquired diseases. However, even although the efficiency of non-viral transfection systems has improved in the last decade, none have yet proven to be sufficiently effective in vivo. We report herein our results on the functionalization of single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) by two cationic amphiphiles (lipid RPR120535 and pyrenyl polyamine), their use for the complexation of plasmid DNA, and their efficiency in transfecting cells in vitro. The experiments have shown that the efficiency of transfection is higher when using SWNT instead of MWNT, and that transfection efficiency is similar or slightly higher when using nanoplexes (SWNT/lipid RPR120535/DNA) instead of lipoplexes (lipid RPR120535/DNA) and several orders of magnitude higher than that of naked DNA. This study therefore shows both that the transfection is better when using SWNTs and that it is dependent on the nature of the amphiphilic molecules adsorbed on the nanotubes.


menu
Abstract
Full text
Outline
About this article

Functionalization of Single- and Multi-Walled Carbon Nanotubes with Cationic Amphiphiles for Plasmid DNA Complexation and Transfection

Show Author's information Cyrille Richard( )Nathalie MignetCéline LargeauVirginie EscriouMichel BessodesDaniel Scherman
Unité de Pharmacologie Chimique et GénétiqueCNRS, UMR 8151ParisF-75270 cedexFrance
INSERMU 640ParisF-75270 cedexFrance
Université Paris DescartesFaculté des Sciences Pharmaceutiques et BiologiquesParisF-75270 cedexFrance
ENSCPParisF-75231 cedexFrance

Abstract

The possibility of delivering DNA efficiently to cells represents a crucial issue for the treatment of both genetic and acquired diseases. However, even although the efficiency of non-viral transfection systems has improved in the last decade, none have yet proven to be sufficiently effective in vivo. We report herein our results on the functionalization of single-walled carbon nanotubes (SWNT) and multi-walled carbon nanotubes (MWNT) by two cationic amphiphiles (lipid RPR120535 and pyrenyl polyamine), their use for the complexation of plasmid DNA, and their efficiency in transfecting cells in vitro. The experiments have shown that the efficiency of transfection is higher when using SWNT instead of MWNT, and that transfection efficiency is similar or slightly higher when using nanoplexes (SWNT/lipid RPR120535/DNA) instead of lipoplexes (lipid RPR120535/DNA) and several orders of magnitude higher than that of naked DNA. This study therefore shows both that the transfection is better when using SWNTs and that it is dependent on the nature of the amphiphilic molecules adsorbed on the nanotubes.

Keywords: Carbon nanotubes, in vitro, gene delivery, plasmid DNA, amphiphile

References(25)

1

Zelphati, O.; Nguyen, C.; Ferrari, M.; Felgner, J.; Tsai, Y.; Felgner, P. L. Stable and monodisperse lipoplex formulations for gene delivery. Gene Ther. 1998, 5, 1272–1282.

2

Boussif, O.; Lezoualc'h, F.; Zanta, M. A.; Mergny, M. D.; Scherman, D.; Demeneix, B.; Behr, J. P. A versatile ersatile vector for gene and oligonucleotide transfer into cells in culture and in-vivo-polyethylenimine. Proc. Natl. Acad. Sci. USA 1995, 92, 7297–7301.

3

Haensler, J.; Szoka, F. C. Jr. Polyamidomine olyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjug. Chem. 1993, 4, 372–379.

4

Gottschalk, S.; Sparrow, J. T.; Hauer, J.; Mims, M. P.; Leland, F. E.; Woo, S. L. C.; Smith. L. C. A novel DNA-peptide complex for efficient gene transfer and expression in mammalian cells. Gene Ther. 1996, 3, 448–457.

5

Blessing, T.; Remy, J. S.; Behr J. P. Monomolecular collapse of plasmid DNA into stable virus-like particles. Proc. Natl. Acad. Sci. USA 1998, 95, 1427–1431.

6

Kneuer, C.; Sameti, M.; Bakowsky, U.; Schiestel, T.; Schirra, H.; Schmidt, H.; Lehr, C. M. A nonviral DNA delivery system based on surface modified silica-nanoparticles can efficiently transfect cells in vitro. Bioconjug. Chem. 2000, 11, 926–932.

7

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

8

Cui, D.; Tian, F.; Kong, Y.; Titushikin, I.; Gao, H. Effects of single-walled carbon nanotubes on the polymerase chain reaction. Nanotechnology 2004, 15, 154–157.

9

Mattson, M. P.; Haddon, R. C.; Rao, A. M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci. 2000, 14, 175–182.

10

Pantarotto, D.; Briand, J.; Prato, M.; Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. 2004, 16–17.

11

Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed. 2004, 43, 5242–5246.

12

Kam, N. W. S.; Jessop, T. C.; Wender, P. A; Dai, H. Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells. J. Am. Chem. Soc. 2004, 126, 6850–6851.

13

Kam, N. W. S.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc. 2005, 127, 12492–12493.

14

Gao, L.; Nie, L.; Wang, T.; Qin, Y.; Guo, Z.; Yang, D.; Yan. X. Carbon nanotube delivery of the gfp gene into mammalian cells. ChemBioChem. 2006, 7, 239–242.

15

Liu, Y.; Wu, D. -C.; Zhang, W. -D.; Jiang, X.; He, C. -B.; Chung, T. S.; Goh, S. H.; Leong, K. W. Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed. 2005, 44, 4782–4785.

16

Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C. D.; Briand, J. -P.; Prato, M.; Bianco, A.; Kostarelos, K. Functionalized carbon nanotubes for plasmid DNA gene delivery. J. Am. Chem. Soc. 2005, 127, 4388–4396.

17

Tans, S. C.; Verschueren, A. R. M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52.

18

Balasubramanian, K.; Burghard; M. Chemically functionalized carbon nanotubes. Small 2005, 1, 180–192.

19

Richard, C.; Balavoine, F.; Schultz, P.; Ebbesen, T. W.; Mioskowski, C. Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 2003, 300, 775–778.

20

Richard, C.; Balavoine, F.; Schultz, P.; Moreau, N.; Mioskowski, C. Immobilization of histidine-tagged proteins on functionalized carbon nanotubes. J. Bionanosci. 2007, 1, 106–113.

21

Scherman, D.; Bessodes, M.; Cameron, B.; Herscovici, J.; Hofland, H.; Pitard, B.; Soubrier, F.; Wils, P. Application of lipids and plasmid design for gene delivery to mammalian cells. J. Crouzet, Curr. Opin. Biotech. 1998, 9, 480–485.

22

Byk, G.; Dubertret, C.; Escriou, V.; Frederic, M.; Jaslin, G.; Rangara, R.; Pitard, B.; Crouzet, J.; Wils, P.; Schwartz, B.; Scherman, D. Synthesis, activity, and structure-activity relationship studies of novel cationic lipids for DNA transfer. J. Med. Chem. 1998, 41, 224–235.

23

Chen, R. J.; Zhang, Y.; Wang, D.; Dai, H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 2001, 123, 3838–3839.

24

Escriou, V.; Ciolina, C.; Lacroix, F.; Byk, G.; Scherman, D.; Wils; P. Cationic lipid-mediated gene transfer: Effect of serum on cellular uptake and intracellular fate of lipopolyamine/DNA complexes. BBA, 1998, 1368, 276–288.

25

Lee, S. B.; Koepsel, R. R.; Russell, A. J. Surface dispersion and hardening of self-assembled diacetylene nanotubes. Nano Lett. 2005, 5, 2202–2206.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 March 2009
Revised: 27 May 2009
Accepted: 27 May 2009
Published: 01 August 2009
Issue date: August 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors thank René Lai-Kuen (University Paris Descartes, Service Commun d'Imagerie Cellulaire et Moléculaire) for his help with SEM experiments.

Rights and permissions

This article is published with open access at Springerlink.com

Return