Journal Home > Volume 2 , Issue 8

We report a novel nanotechnology-based approach for the highly efficient catalytic oxidation of phenols and their removal from wastewater. We use a nanocomplex made of multi-walled carbon nanotubes (MWNTs) and magnetic nanoparticles (MNPs). This nanocomplex retains the magnetic properties of individual MNPs and can be effectively separated under an external magnetic field. More importantly, the formation of the nanocomplex enhances the intrinsic peroxidase-like activity of the MNPs that can catalyze the reduction of hydrogen peroxide (H2O2). Significantly, in the presence of H2O2, this nanocomplex catalyzes the oxidation of phenols with high efficiency, generating insoluble polyaromatic products that can be readily separated from water.


menu
Abstract
Full text
Outline
About this article

Design of a Carbon Nanotube/Magnetic Nanoparticle-Based Peroxidase-Like Nanocomplex and Its Application for Highly Efficient Catalytic Oxidation of Phenols

Show Author's information Xiaolei ZuoCheng PengQing HuangShiping SongLihua WangDi LiChunhai Fan( )
Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghai201800China

Abstract

We report a novel nanotechnology-based approach for the highly efficient catalytic oxidation of phenols and their removal from wastewater. We use a nanocomplex made of multi-walled carbon nanotubes (MWNTs) and magnetic nanoparticles (MNPs). This nanocomplex retains the magnetic properties of individual MNPs and can be effectively separated under an external magnetic field. More importantly, the formation of the nanocomplex enhances the intrinsic peroxidase-like activity of the MNPs that can catalyze the reduction of hydrogen peroxide (H2O2). Significantly, in the presence of H2O2, this nanocomplex catalyzes the oxidation of phenols with high efficiency, generating insoluble polyaromatic products that can be readily separated from water.

Keywords: catalysis, Carbon nanotubes, magnetic nanoparticles, peroxidase, phenol

References(26)

1

Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310.

2

Editorial: Cleaning up water. Nat. Mater. 2008, 7, 341.

DOI
3

Gupta, A. K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005, 26, 3995–4021.

4

Su, Y. Y.; He, Y.; Lu, H. T.; Sai, L. M.; Li, Q. N.; Li, W. X.; Wang, L. H.; Shen, P. P.; Huang, Q.; Fan, C. H. The cytotoxicity of cadmium-based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials 2009, 30, 19–25.

5

Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

6

Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841–850.

7

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 2008, 3, 31–35.

8

Nie, S. M.; Xing, Y.; Kim, G. J.; Simons, J. W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng. 2007, 9, 257–288.

9

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–168.

10

Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T. Small-diameter silicon nanowire surfaces. Science 2003, 299, 1874–1877.

11

Alivisatos, P. The use of nanocrystals in biological detection. Nat. Biotechnol. 2004, 22, 47–52.

12

Freudenberg, K.; Neish, A. C. Constitution and Biosynthesis of Lignin; Springer: New York, 1968.

DOI
13

Klibanov, A. M.; Tu, T. M.; Scott, K. P. Peroxidase-catalyzed removal of phenols from coal-conversion waste-waters. Science 1983, 221, 259–260.

14

Lim, Y. T.; Cho, M. Y.; Lee, J. M.; Chung, S. J.; Chung, B. H. Simultaneous intracellular delivery of targeting antibodies and functional nanoparticles with engineered protein G system. Biomaterials 2009, 30, 1197–1204.

15

Chertok, B.; Moffat, B. A.; David, A. E.; Yu, F. Q.; Bergemann, C.; Ross, B. D.; Yang, V. C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008, 29, 487–496.

16

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

17

Ho, M. Y. K.; Rethnitz, G. A. Highly stable biosensor using an artificial enzyme. Anal. Chem. 1987, 59, 536–537.

18

Zhang, J. B.; Zhuang, J.; Gao, L. Z.; Zhang, Y.; Gu, N.; Feng, J.; Yang, D. L.; Zhu, J. D.; Yan, X. Y. Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 2008, 73, 1524–1528.

19

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

20

Cao, A. Y.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-compressible foamlike carbon nanotube films. Science 2005, 310, 1307–1310.

21

Ajayan, P. M.; Tour, J. M. Materials science—Nanotube composites. Nature 2007, 447, 1066–1068.

22

Chen, F. M.; Wang, B.; Chen, Y.; Li, L. J. Towards the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers. Nano Lett. 2007, 7, 3013–3017.

23

Emerson, E. The condensation of aminoantipyrine. Ⅱ. A new color test for phenolic compounds. J. Org. Chem. 1943, 8, 417–428.

24

Ringe, D.; Petsko, G. A. How enzymes work? Science 2008, 320, 1428–1429.

25

McDonald, T. J.; Svedruzic, D.; Kim, Y. H.; Blackburn, J. L.; Zhang, S. B.; King, P. W.; Heben, M. J. Wiring-up hydrogenase with single-walled carbon nanotubes. Nano Lett. 2007, 7, 3528–3534.

26

Yu, J.; Taylor, K. E.; Zou, H. X.; Biswas, N.; Bewtra, J. K. Phenol conversion and dimeric intermediates in horseradish peroxidase-catalyzed phenol removal from water. Environ. Sci. Technol. 1994, 28, 2154–2160.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 March 2009
Revised: 08 May 2009
Accepted: 19 May 2009
Published: 01 August 2009
Issue date: August 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We thank Prof. Jun Hu for helpful discussion. This work was supported by the National Natural Science Foundation (20873175 and 20725516), the Shanghai Municipal Commission for Science and Technology (0752nm021), and the Ministry of Science and Technology of China (2006CB933000, 2007CB936000, and 2007AA06A406).

Rights and permissions

This article is published with open access at Springerlink.com

Return