Journal Home > Volume 2 , Issue 8

The nano era demands the synthesis of new nanostructured materials, if possible by simplified techniques, with remarkable properties and versatile applications. Here, we demonstrate a new single-step reproducible melt-quench methodology to fabricate core-shell bimetallic (Au0–Ag0) nanoparticles (28–89 nm) embedded glasses (dielectrics) by the use of a new reducing glass matrix, K2O–B2O3–Sb2O3 (KBS) without applying any external reducing agent or multiple processing steps. The surface plasmon resonance (SPR) band of these nanocomposites embedded in KBS glass is tunable in the range 554-681 nm. More remarkably, taking advantage of the selective reduction capability of Sb2O3, this single-step methodology is used to fabricate inter-metallic: rare-earth ions co-embedded (Au–Ag: Sm3+) dielectric (glass)-based-dnanocomposites and study the effect of enhanced local field on the red upconversion fluorescence of Sm3+ ions at 636 nm. The enhancement is found to be about 2 folds. This single-step in-situ selective reduction approach can be used to fabricate a variety of hybrid-nanocomposite devices for laser based applications (see supplementary information).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Core–Shell Au–Ag Nanoparticles in Dielectric Nanocomposites with Plasmon-Enhanced Fluorescence: A New Paradigm in Antimony Glasses

Show Author's information Tirtha SomBasudeb Karmakar( )
Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research)196, Raja S. C. Mullick RoadKolkata700 032India

Abstract

The nano era demands the synthesis of new nanostructured materials, if possible by simplified techniques, with remarkable properties and versatile applications. Here, we demonstrate a new single-step reproducible melt-quench methodology to fabricate core-shell bimetallic (Au0–Ag0) nanoparticles (28–89 nm) embedded glasses (dielectrics) by the use of a new reducing glass matrix, K2O–B2O3–Sb2O3 (KBS) without applying any external reducing agent or multiple processing steps. The surface plasmon resonance (SPR) band of these nanocomposites embedded in KBS glass is tunable in the range 554-681 nm. More remarkably, taking advantage of the selective reduction capability of Sb2O3, this single-step methodology is used to fabricate inter-metallic: rare-earth ions co-embedded (Au–Ag: Sm3+) dielectric (glass)-based-dnanocomposites and study the effect of enhanced local field on the red upconversion fluorescence of Sm3+ ions at 636 nm. The enhancement is found to be about 2 folds. This single-step in-situ selective reduction approach can be used to fabricate a variety of hybrid-nanocomposite devices for laser based applications (see supplementary information).

Keywords: surface plasmon resonance, Gold-silver nanostructures, core-shell morphology, antimony glass, metal-enhanced rare earth fluorescence

References(41)

1

Hu, M. -S.; Chen, H. -L.; Shen, C. -H.; Hong, L. -S.; Huang, B. -R.; Chen, K. -H.; Chen, L. -C. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nat. Mater. 2006, 5, 102–106.

2

Liu, J. F.; Chen, W.; Liu, X. M.; Zhou, K. B.; Li, Y. D. Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.

3

De, G.; Rao, C. N. R. Two-dimensional Au and Au−Cu alloy nanocrystals with orientation in (111) plane embedded in glassy silica Films. J. Phys. Chem. B 2003, 107, 13597–13600.

4

Armelao, L.; Barreca, D.; Bottaro, G.; Mattei, G.; Sada, C.; Tondello, E. Copper-silica nanocomposites tailored by the sol–gel route. Chem. Mater. 2005, 17, 1450–1456.

5

Speranza, G.; Minati, L.; Chiasera, A.; Ferrari, M.; Righini, G. C.; Ischia, G. Quantum confinement and matrix effects in silver-exchanged soda lime glasses J. Phys. Chem. C 2009, 113, 4445–4450.

6

Gonella, F.; Cattaruzza, E.; Battaglin, G.; D'Acaptio, F.; Sada, C.; Mazzoldi, P.; Maurizio, C.; Mattei, G.; Martorana, A.; Longo, A.; Zontone, E. Double implantation in silica glass for metal cluster composite formation: A study by synchrotron radiation techniques. J. Non-Cryst. Solids 2001, 280, 241–248.

7

Zhang, J.; Dong, W.; Sheng, J. W.; Zheng, J. W.; Li, J.; Qiao, L.; Jiang, L. Q. Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation. J. Cryst. Growth 2008, 310, 234–239.

8
Gonella, F.; Mazzoldi, P. Metal nanocluster composite glasses. In Handbook of Nanostructured Materials and Nanotechnology; Nalwa, H. S., Eds. j. Academic Press: San Diego, 2000 Vol. 4, p. 81.https://doi.org/10.1016/B978-012513760-7/50044-7
DOI
9

Selvan, S. T.; Hayakawa, T.; Nogami, M.; Kobayashi, Y.; Liz-Marzán, L. M.; Hamanaka, Y.; Nakamura, A. Sol-gel derived gold nanoclusters in silica glass possessing large optical nonlinearities. J. Phys. Chem. B 2002, 106, 10157–10162.

10

Hofmeister, H.; Drost, W. -G.; Berger A. Oriented prolate silver particles in glass-characteristics of novel dichroic polarizers. Nanostruct. Mater. 1999, 12, 207–210.

11

Grabert, H.; Devoret, M. Single-Charge Tunneling; Plenum: New York, 1992.

DOI
12

Kassab, L. R. P.; de Araújo, C. B.; Kobayashi, R. A.; de A Pinto, R. D.; da Silva, D. M. Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses. J. Appl. Phys. 2007, 102, 103515 (1–4).

13

Kassab, L. R. P.; Bomfim, F. A.; Martinelli, J. R.; Wetter, N. U.; Neto J. J.; de Araújo, C. B. Energy transfer and frequency upconversion in Yb3+-Er3+-doped PbOGeO2 glass containing silver nanoparticles. Appl. Phys. B 2009, 94, 239–242.

14

Pompa, P. P.; Martiradonna, L.; Della Torre, A.; Della Sala, F.; Manna, L.; De Vittorio, M.; Calabi, F.; Cingolani, R.; Rinaldi, R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat. Nanotechnol. 2006, 1, 126–130.

15

Le, F.; Brandl, D. W.; Urzhumov, Y. A.; Wang, H.; Kundu, J.; Halas, N. J.; Aizpurua, J.; Nordlander, P. Metallic Nanoparticle Arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2008, 2, 707–718.

16

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

17

Mattei, G.; de Julin Fernndez, C. D.; Mazzoldi, P.; Sada, C.; De, G.; Battaglin, G.; Sangregorio, C.; Gatteschi, D. Synthesis, structure, and magnetic properties of Co, Ni, and Co-Ni alloy nanocluster-doped SiO2 films by sol−gel processing. Chem. Mater. 2002, 14, 3440–3447.

18

Hosteler, M. J.; Zhong, C. -J.; Yen, B. K. H.; Anderegg, J.; Gross, S. M.; Evans, N. D.; Porter, M.; Murrary, R. W. Stable, monolayer-protected metal alloy clusters. J. Am. Chem. Soc. 1998, 120, 9396–9399.

19

Ferrando, R.; Jellinek, J.; Johnston, R. L. Nanoalloys: From theory to applications of alloy clusters and nanoparticles. Chem. Rev. 2008, 108, 845–910.

20

Mizukoshi, Y.; Fujimoto, T.; Nagata, Y.; Oshima, R.; Maeda, Y. Characterization and catalytic activity of core-shell structured gold/palladium bimetallic nanoparticles synthesized by the sonochemical method. J. Phys. Chem. B 2000, 104, 6028–6032.

21

Som, T.; Karmakar, B. Infrared-to-red upconversion luminescence in samarium-doped antimony glasses. J. Lumin. 2008, 128, 1989–1996.

22

Lide, D. R., CRC Handbook of Chemistry and Physics, 75th edn; CRC Press: Boca Raton, 1975; pp. 8-21–34.

23

Terashima, K.; Hashimoto, T.; Uchino, T.; Kim, S. -H.; Yoko, T. Structure and nonlinear optical properties of Sb2O3-B2O3 binary glasses. J. Ceram. Soc. Jpn. 1996, 104, 1008–1014.

24

Nalin, M.; Messaddeq, Y.; Ribeiro, S. J. L.; Poulain, M.; Briois, V.; Brunlkaus, G.; Rosenhahn, C.; Mosel, B. D.; Eckert, H. Structural organization and thermal properties of the Sb2O3-SbPO4 glass system. J. Mater. Chem. 2004, 14, 3398–3405.

25

Vogel, W. Glass Chemistry; Springer-verlag: Berlin, 1992.

26
Persans, P. D.; Stokes, K. L. Embedded nanocrystal spectroscopy: Semiconductor and metal particles in inulators. In Handbook of Nanophase Materials; Golstein, A. N., Ed.; Marcel Dekker: New York, 1971; pp. 271–316.
27

Peng, Z.Q.; Spliethoff, B.; Tesche, B.; Walther, T.; Kleinermanns, K. Laser-assisted synthesis of Au-Ag alloy nanoparticles in solution. J. Phys. Chem. B 2006, 110, 2549–2554.

28

Chen, H. M.; Liu, R. S.; Jang, L. -Y.; Lee, J. -F.; Hu, S. F. Characterization of core-shell type and alloy Ag/Au bimetallic clusters by using extended X-ray absorption fine structure spectroscopy. Chem. Phys. Lett. 2006, 421, 118–123.

29

Srnova-Sloufova, I.; Lednicky, F.; Gemperle, A; Gemperlova, J. Core–shell (Ag)Au bimetallic nanoparticles: Analysis of transmission electron microscopy images. Langmuir 2000; 16, 9928–9935.

30

Moskovits, M.; Srnova-Sloufova, I.; Vlekova, B. Bimetallic Ag-Au nanoparticles: Extracting meaningful optical constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 2002, 116, 10435–10446.

31

Papavassiliou, G. C. Surface plasmons in small Au-Ag alloy particles. J. Phys. F: Metal Phys. 1976, 6, L 103–106.

32
Beall, G. H.; Duke, D. A. Glass ceramic technology. In Glass: Science and Technology; Uhlman, D. R.; Kreidl, N. J., Eds.; Academic Press: San Diego, 1983; vol 1.
33

Cullity, B. D. Elements of X-Ray Diffraction; Addison-Wesley Publishing Co: California, 1978.

34

Hayakawa, T; Selvan, S. T.; Nogami, M. Field enhancement effect of small Ag particles on the fluorescence from Eu3+-doped SiO2 glass. Appl. Phys. Lett. 1999, 74, 1513–1515.

35

Geddes, C. D.; Gryczynski, I.; Malicka, J.; Gryczynski, Z.; Lakowicz J. R. Metal-enhanced fluorescence: Potential applications in HTS. Comb. Chem. High Through. Screen. 2003, 6, 109–117.

36

Zhu, J. SPR induced quenching of the 5D17F1 emission of Eu3+ doped gold colloids. Phys. Lett. A 2005, 341, 212–215.

37

Matveeva, E. G.; Shtoyko, T.; Gryczynski, I.; Akopova, I.; Gryczynski, Z. Fluorescence quenching/enhancement surface assays: Signal manipulation using silver-coated gold nanoparticles. Chem. Phys. Lett. 2008, 454, 85–90.

38

Stranik, O.; McEvoy, H. M.; McDonagh, C.; MacCraith, B. D. Plasmonic enhancement of fluorescence for sensor applications. Sens. Actuat. B 2005, 107, 148–153.

39

Barnes, W. L. Fluorescence near interfaces: The role of photonic mode density. J. Mod. Opt. 1998, 45, 661–669.

40

Enderlein, J. Single-molecule fluorescence near a metal layer. Chem. Phys. 247, 1, 1–9.

41

Liao, H. B.; Wen, W. J.; Wong, G. K. L. Photoluminescence from Au nanoparticles embedded in Au: Oxide composite films. J. Opt. Soc. Am. B 2006, 23, 2518–2521.

File
nr-2-8-607_ESM.pdf (712.6 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 April 2009
Revised: 19 May 2009
Accepted: 20 May 2009
Published: 01 August 2009
Issue date: August 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

One of the authors (T. S.) gratefully acknowledges the financial support of the Council of Scientific and Industrial Research (CSIR), New Delhi in the form of NET-SRF under sanction number 31/015(0060)/2007-EMR-1. They gratefully thank Dr. H. S. Maiti, Director of this institute for his kind permission to publish this work. The technical support provided by the infrastructural facility of this institute (X-ray Division) and National TEM Facility Center, IIT, Kharagpur are also thankfully acknowledged.

Rights and permissions

This article is published with open access at Springerlink.com

Return