Journal Home > Volume 2 , Issue 6

We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, one- or two-layer graphene regions occupy up to 87% of the film area. Single layer coverage accounts for 5%–11% of the overall film. These regions expand across multiple grain boundaries of the underlying polycrystalline Ni film. The number density of sites with multilayer graphene/graphite (> 2 layers) is reduced as the cooling rate decreases. These films can also be transferred to other substrates and their sizes are only limited by the sizes of the Ni film and the CVD chamber. Here, we demonstrate the formation of films as large as 1 in2. These findings represent an important step towards the fabrication of large-scale high-quality graphene samples.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Growth of Large-Area Single- and Bi-Layer Graphene by Controlled Carbon Precipitation on Polycrystalline Ni Surfaces

Show Author's information Alfonso Reina1Stefan Thiele2Xiaoting Jia1Sreekar Bhaviripudi3Mildred S. Dresselhaus3,4Juergen A. Schaefer2Jing Kong3( )
Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
Institut für Physik and Institut für Mikro- und Nanotechnologien Technische Universität Ilmenau Ilmenau 98684 Germany
Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA
Department of Physics Massachusetts Institute of Technology Cambridge Massachusetts 02139 USA

Abstract

We report graphene films composed mostly of one or two layers of graphene grown by controlled carbon precipitation on the surface of polycrystalline Ni thin films during atmospheric chemical vapor deposition (CVD). Controlling both the methane concentration during CVD and the substrate cooling rate during graphene growth can significantly improve the thickness uniformity. As a result, one- or two-layer graphene regions occupy up to 87% of the film area. Single layer coverage accounts for 5%–11% of the overall film. These regions expand across multiple grain boundaries of the underlying polycrystalline Ni film. The number density of sites with multilayer graphene/graphite (> 2 layers) is reduced as the cooling rate decreases. These films can also be transferred to other substrates and their sizes are only limited by the sizes of the Ni film and the CVD chamber. Here, we demonstrate the formation of films as large as 1 in2. These findings represent an important step towards the fabrication of large-scale high-quality graphene samples.

Keywords: Graphene, chemical vapor deposition, carbon nanomaterials, nickel catalyst

References(37)

1

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

2

Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

3

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

4

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

5

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, M.; Sun, Z.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; Boland, John J.; Niraj, P.; Duesberg, G.; Krishnamurthy, S.; Goodhue, R.; Hutchison, J.; Scardaci, V.; Ferrari, Andrea C.; Coleman, Jonathan N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

6

Li, D.; Mueller, Marc B; Gilje, S.; Kaner, Richard B.; Wallace, Gordon G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

7

Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

8

Worsley, K. A.; Ramesh, P.; Mandal, S. K.; Niyogi, S.; Itkis, M. E.; Haddon, R. C. Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 2007, 445, 51–56.

9

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Ultrathin epitaxial graphite: 2-D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

10

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C. Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006, 312, 1191–1196.

11

Sutter, P. W.; Flege, J. -I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

12

Pan, Y.; Shi, D. X.; Gao, H. J. Formation of graphene on Ru(0001) surface. Chin. Phys. 2007, 16, 3151–3153.

13

Dato, A.; Radmilovic, V.; Lee, Z. H.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012–2016.

14

Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. -S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

15

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

16

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

17

De Arco, L. G.; Yi, Z.; Kumar, A.; Chongwu, Z., Synthesis, transfer, and devices of single- and few-layer graphene by chemical vapor deposition. IEEE Trans. Nanotechnol. 2009, 8, 135–138.

18

Fujita, D.; Yoshihara, K. Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel(111) surface. J. Vac. Sci. Technol. A 1994, 12, 2134–2139.

19

Shelton, J. C.; Patil, H. R.; Blakely, J. M. Equilibrium segregation of carbon to a nickel (111) surface: A surface phase transition. Surf. Sci. 1974, 43, 493–520.

20

Loginova, E.; Bartelt, N. C.; Feibelman, P. J.; McCarty, K. F. Evidence for graphene growth by C cluster attachment. New J. Phys. 2008, 10, 093026.

21

Muradov, N. Z. How to produce hydrogen from fossil fuels without CO2 emission. Int. J. Hydrogen Energ. 1993, 18, 211–215.

22

Takenaka, S.; Shigeta, Y.; Tanabe, E.; Otsuka, K. Methane decomposition into hydrogen and carbon nanofibers over supported Pd–Ni catalysts: Characterization of the catalysts during the reaction. J. Phys. Chem. B 2004, 108, 7656–7664.

23

Fujita, D.; Homma, T. Surface precipitation of graphite layers on carbon-doped nickel and their stabilization effect against chemisorption and initial oxidation. Surf. Interface Anal. 1992, 19, 430–434.

24
Thiele, S.; Reina, A.; Healey, P.; Kedzierski, J.; Wyatt, P.; Hsu, P. L.; Keast, C.; Schaefer, J.; Kong, J. Engineering polycrystalline Ni films to improve thickness uniformity of the chemical vapor deposition grown graphene films. Submitted to Nanotechnology.
25

Wang, Y. M.; Cheng, S.; Wei, Q. M.; Ma, E.; Nieh, T. G.; Hamza, A. Effects of annealing and impurities on tensile properties of electrodeposited nanocrystalline Ni. Scripta Mater. 2004, 51, 1023–1028.

26

Shen, T. D.; Schwarz, R. B.; Feng, S.; Swadener, J. G.; Huang, J. Y.; Tang, M.; Zhang, H. Z.; Vogel, S. C.; Zhao, Y. S. Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 2007, 55, 5007–5013.

27

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

28

Lee, D. S.; Riedl, C.; Krauss, B.; von Klitzing, K.; Starke, U.; Smet, J. H. Raman spectra of epitaxial fraphene on SiC and of epitaxial graphene transferred to SiO2. Nano Lett. 2008, 8, 4320–4325.

29

Frade, J. R. Kinetics of nucleation and growth. 1. Reation controlled growth. J. Mater. Sci. 1993, 28, 6715–6718.

30

Frade, J. R. Kinetics of nucleation and growth. 2. Diffusion-controlled growth. J. Mater. Sci. 1994, 29, 169–174.

31

Gambaryan-Roisman, T.; Litovsky, E.; Shapiro, M.; Shavit, A. Reaction-diffusion model of surface and grain boundary segregation kinetics. Int. J. Heat Mass Tran. 2000, 43, 4135–4151.

32

Song, S.; Yuan, Z.; Xu, T. Non-equilibrium segregation of boron at austenite grain boundaries. J. Mater. Sci. Lett. 1991, 10, 1232–1234.

33

Foley, J. D.; van Dan, A.; Feiner, S, K.; Hughes, J. F. Computer Graphics: Principles and Practice; Addison-Wesley systems programming series: New Jersey, 1995.

34

Blake, P.; Hill, E. W.; Neto, A. H. C.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124.

35

Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F. The optical visibility of graphene: Interference colors of ultrathin graphite on SiO2. Nano Lett. 2007, 7, 2707–2710.

36

Thompson, C. V. Grain growth in thin films. Annu. Rev. Mater. Sci. 1990. 20, 245–268.

37

Thompson, C. V.; Carel, R. Stress and grain growth in thin films. J. Mech. Phys. Solids 1996, 44, 657–673.

File
12274_2009_9059_MOESM1_ESM.pdf (632.4 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 27 April 2009
Revised: 16 May 2009
Accepted: 17 May 2009
Published: 01 June 2009
Issue date: June 2009

Copyright

© Tsinghua University Press and Springer-Verlag. This article is published with open access at Springerlink.com 2009

Acknowledgements

Acknowledgements

This work was partly supported by the Materials, Structures and Devices (MSD) Focus Center, one of the five centers of the Focus Center Research Program, a Semiconductor Research Corporation program. Support from NSF/CTS 05-06830 (X. J. and M. S. D) and NSF/DMR07-04197 (A. R. and M. S. D.) is also acknowledged. Raman measurements were carried out in the George R. Harrison Spectroscopy Laboratory supported by NSF-CHE 0111370 and NIH-RR02594 grants. The authors acknowledge Mario Hofmann for help in preparation of graphic illustrations for potential cover art and Gerardo Martinez and Arturo Ponce Pedraza for providing images for the potential cover art.

Rights and permissions

Return