Journal Home > Volume 2 , Issue 6

The central goal of synthetic chemistry of colloidal nanocrystals at present is to discover functional materials. Such functional materials should help mankind to meet the tough challenges brought by the rapid depletion of natural resources and the significant increase of population with higher and higher living standards. With this thought in mind, this essay discusses the basic guidelines for developing this new branch of synthetic chemistry, including rational synthetic strategies, functional performance, and green chemistry principles.


menu
Abstract
Full text
Outline
About this article

An Essay on Synthetic Chemistry of Colloidal Nanocrystals

Show Author's information Xiaogang Peng( )
Department of Chemistry and Biochemistry University of Arkansas Fayetteville AR 72701 USA

Abstract

The central goal of synthetic chemistry of colloidal nanocrystals at present is to discover functional materials. Such functional materials should help mankind to meet the tough challenges brought by the rapid depletion of natural resources and the significant increase of population with higher and higher living standards. With this thought in mind, this essay discusses the basic guidelines for developing this new branch of synthetic chemistry, including rational synthetic strategies, functional performance, and green chemistry principles.

Keywords: crystallization, green chemistry, Colloidal nancrystal, synthetic chemistry, function materiols

References(62)

1

Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed 2007, 46, 52–66.

2

Brus, L. E. A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J. Chem. Phys. 1983, 79, 5566–71.

3

Peng, Z. A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

4

Turkevich, J. Collodial gold. Part I. Gold Bull. 1985, 18, 86–91.

5

Mullin, J. W. Crystallization, 3nd Edn. Butterworth-Heinemann: Oxford, 1997.

6

Oxtoby, D. W. Nucleation of first-order phase transitions. Acc. Chem. Res. 1998, 31, 91–97.

7

Peng, X. G. Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 2002, 8, 334–339.

DOI
8

Murray, C. B.; Sun, S. H.; Gaschler, W.; Doyle, H.; Betley, T. A.; Kagan, C. R. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 2001, 45, 47–56.

9

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Allvisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

10

Thessing, J.; Qian, J. H.; Chen, H. Y.; Pradhan, N.; Peng, X. G. Interparticle influence on size/size distribution evolution of nanocrystals. J. Am. Chem. Soc. 2007, 129, 2736–2737.

11

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

12

Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

13

Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 2003, 15, 2854–2860.

14

Qu, L. H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

15

Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal Ⅱ−Ⅵ and Ⅲ−Ⅴ semiconductor nanocrystals as a aactor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782–5790.

16

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of Ⅱ−Ⅵ and Ⅲ−Ⅴ colloidal semiconductor nanocrystal growth: "Focusing" of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

17

Chen, Y. F.; Kim, M.; Lian, G. D.; Johnson, M. B.; Peng, X. G. Side reactions in controlling the quality, yield, and stability of high quality colloidal nanocrystals. J. Am. Chem. Soc. 2005, 127 (38), 13331–13337.

18

Holland, G. P.; Sharma, R.; Agola, J. O.; Amin, S.; Solomon, V. C.; Singh, P.; Buttry, D. A.; Yarger, J. L. NMR characterization of phosphonic acid capped SnO2 nanoparticles. Chem. Mater. 2007, 19, 2519–2526.

19

Ji, X. H.; Copenhaver, D.; Sichmeller, C.; Peng, X. G. Ligand bonding and dynamics on colloidal nanocrystals at room temperature: The case of alkylamines on CdSe nanocrystals. J. Am. Chem. Soc. 2008, 130, 5726–5735.

20

Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.

21

Chen, Y. F.; Johnson, E.; Peng, X. G. Formation of monodisperse and shape-controlled MnO nanocrystals in non-injection synthesis: Self-focusing via ripening. J. Am. Chem. Soc. 2007, 129, 10937–10947.

22

Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.

23

Steigerwald, M. L.; Brus, L. E. Semiconductor crystallites: A class of large molecules. Acc. Chem. Res. 1990, 23, 183–188.

24

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–15.

25

Sugimoto, T. Preparation of monodispersed colloidal particles. Adv. Colloid Interface Sci. 1987, 28, 65–108.

26

Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 7677–7680.

27

Cumberland, S. L.; Hanif, K. M.; Javier, A.; Khitrov, G. A.; Strouse, G. F.; Woessner, S. M.; Yun, C. S. Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem. Mater. 2002, 14, 1576–1584.

28

Qu, L. H.; Yu, W. W.; Peng, X. G. In situ observation of the nucleation and growth of CdSe nanocrystals. Nano Lett. 2004, 4, 465–469.

29

Yang, Y. A.; Wu, H. M.; Williams, K. R.; Cao, Y. C. Synthesis of CdSe and CdTe nanocrystals without precursor injection. Angew. Chem. Int. Ed. 2005, 44, 6712–6715.

30

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-paked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

31

Pacholski, C.; Kornowski, A.; Weller, H. Self-assembly of ZnO: From nanodots to nanorods. Angew. Chem. Int. Ed. 2002, 41, 1188–1191.

DOI
32

Tang, Z.; Kotov, N. A.; Giersig, M. Science 2002, 297, 237–240.

DOI
33

Cho, K. -S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. J. Am. Chem. Soc. 2005, 127, 7140–7147.

34

Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Peng, X. G. Crystalline nanoflowers withdifferent chemical compositions and physical properties grown by limited ligand protection. Angew. Chem. Int. Ed. 2006, 45, 5361–5364.

35

Yu, W. W.; Peng, X. G. Formation of high-quality CdS and other Ⅱ–Ⅵ semiconductor nanocrystals in noncoordinating solvents: Tunable reactivity of monomers. Angew. Chem., Int. Edn. 2002, 41, 2368–2371.

DOI
36

Peng, Z. A.; Peng, X. G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123, 1389–1395.

37

Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

38

Chan, W. C. W.; Nile, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

39

Greenham, N. C.; Peng, X.; Alivisatos, A. P. Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 1996, 54, 17628–17637.

40

Munro, A. M.; Plante, I. J. -L.; Ng, M. S.; Ginger, D. S. Quantitative study of the effects of surface ligand concentration on CdSe nanocrystal photoluminescence. J. Phys. Chem. C 2007, 111, 6220–6227.

41

Bullen, C.; Mulvaney, P. The effects of chemisorption on the luminescence of CdSe quantum dots. Langmuir 2006, 22, 3007–3013.

42

Wang, Y. A.; Li, J. J.; Chen, H. Y.; Peng, X. G. Stabilization of inorganic nanocrystals by organic dendrons. J. Am. Chem. Soc. 2002, 124, 2293–2298.

43

Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

44

Jana, N. R.; Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125, 14280–14281.

45

Steigerwald, M. L.; Brus, L. E. Synthesis, stabilization, and electronic structure of quantum semiconductor nanoclusters. Annu. Rev. Mater. Sci. 1989, 19, 471–495.

46

Katari, J. E. B.; Colvin, V. L.; Alivisatos, A. P. X-ray photoelectron spectroscopy of CdSe nanocrystals with applications to studies of the nanocrystal surface. J. Phys. Chem. 1994, 98, 4109–4117.

47

Hines, M. A.; Guyot-Sionnest, P. Second harmonic generation studies of methylene blue orientation at silica surfaces. J. Phys. Chem. 1996, 100, 468–471.

48

Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

49

Pradhan, N.; Battaglia, D. M.; Liu, Y.; Peng, X. Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett. 2007, 7, 312–317.

50

Pradhan, N.; Goorskey, D.; Thessing, J.; Peng, X. G. An alternative of CdSe nanocrystal emitters: Pure and tunable impurity emissions in ZnSe nanocrystals. J. Am. Chem. Soc. 2005, 127, 17586–17587.

51

Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.

52

Radovanovic, P. V.; Gamelin, D. R. Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: Demonstration of an isocrystalline core/shell synthetic method. J. Am. Chem. Soc. 2001, 123, 12207–12214.

53

Hanif, K. M.; Meulenberg, R. W.; Strouse, G. F. Magnetic ordering in doped Cd1-xCoxSe diluted magnetic quantum dots. J. Am. Chem. Soc. 2002, 124, 11495–11502.

54

Schwartz, D. A.; Norberg, N. S.; Nguyen, Q. P.; Parker, J. M.; Gamelin, D. R. Magnetic quantum dots: Synthesis, spectroscopy, and magnetism of Co2+- and Ni2+-doped ZnO nanocrystals. J. Am. Chem. Soc. 2003, 125, 13205–13218.

55

Bhargava, R. N.; Gallagher, D.; Hong, X.; Nurmikko, A. Optical properties of manganese-doped nanocrystals of ZnS. Phys. Rev. Lett. 1994, 72, 416–419.

56

Yang, Y. G.; Chen, O.; Angerhofer, A.; Cao, Y. C. Radial-position-controlled doping in CdS/ZnS core/Shell nanocrystals. J. Am. Chem. Soc. 2006, 128, 12428–12429.

57

Pradhan, N.; Peng, X. G. Efficient and color-tunable Mn-doped ZnSe nanocrystal emitters: control of optical performance via greener synthetic chemistry. J. Am. Chem. Soc. 2007, 129, 3339–3347.

58

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

59

Qu, L. H.; Peng, Z. A.; Peng, X. G. Alternative routes toward high quality CdSe nanocrystals. Nano Lett. 2001, 1, 333–337.

60

Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrare. J. Am. Chem. Soc. 2007, 129, 15432–15433.

61

Xie, R. G.; Chen, K.; Chen, X. Y.; Peng X. G. InAs/InP/ZnSe core/shell/shell quantum dots as near-infrared emitters: Bright, narrow-band, non-cadmium containing, and biocompatible. Nano Res. 2008, 1, 457–464.

62

Li, L. S.; Pradhan, N.; Wang, Y. J.; Peng, X. G. High quality ZnSe and ZnS nanocrystals formed by activating zinc carboxylate precursors. Nano Lett. 2004, 4, 2261–2264.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 March 2009
Accepted: 06 April 2009
Published: 01 June 2009
Issue date: June 2009

Copyright

© Tsinghua University Press and Springer-Verlag. This article is published with open access at Springerlink.com 2009

Acknowledgements

Acknowledgements

Financial support from the National Science Foundation is acknowledged. Ms. Michelle Peng helped in preparing Fig. 13.

Rights and permissions

Return