Journal Home > Volume 2 , Issue 5

Bimetallic PtAu heteronanostructures have been synthesized from Pt-on-Au nanoparticles, which were made from platinum acetylacetonate and gold nanoparticles. Using the Pt-on-Au nanoparticles as precursors, Pt-surface rich PtAu bimetallic heteronanostructures can be produced through controlled thermal treatments, as confirmed by field emission high-resolution transmission electron microscopy (HR-TEM) and elemental mapping using a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM). Oxidation of formic acid was used as a model reaction to demonstrate the effects of varying composition and surface structure on the catalytic performance of PtAu bimetallic nanostructures. Cyclic voltammetry (CV) showed that these carbon-supported PtAu heteronanostructures were much more active than platinum in catalyzing the oxidation of formic acid, judging by the mass current density. The results showed that post-synthesis modification can be a very useful approach to the control of composition distributions in alloy nanostructures.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

PtAu Bimetallic Heteronanostructures Made by Post-Synthesis Modification of Pt-on-Au Nanoparticles

Show Author's information Zhenmeng PengHong Yang( )
Department of Chemical EngineeringUniversity of RochesterGavett Hall 206RochesterNY14627USA

Abstract

Bimetallic PtAu heteronanostructures have been synthesized from Pt-on-Au nanoparticles, which were made from platinum acetylacetonate and gold nanoparticles. Using the Pt-on-Au nanoparticles as precursors, Pt-surface rich PtAu bimetallic heteronanostructures can be produced through controlled thermal treatments, as confirmed by field emission high-resolution transmission electron microscopy (HR-TEM) and elemental mapping using a high-angle annular dark-field scanning transmission electron microscope (HAADF-STEM). Oxidation of formic acid was used as a model reaction to demonstrate the effects of varying composition and surface structure on the catalytic performance of PtAu bimetallic nanostructures. Cyclic voltammetry (CV) showed that these carbon-supported PtAu heteronanostructures were much more active than platinum in catalyzing the oxidation of formic acid, judging by the mass current density. The results showed that post-synthesis modification can be a very useful approach to the control of composition distributions in alloy nanostructures.

Keywords: gold, Nanostructure, alloy, platinum, formic acid oxidation, electrocatalyst, polymer electrolyte membrane fuel cell (PEMFC)

References(55)

1

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

2

Zhang, J. L.; Sasaki, K.; Sutter, E.; Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 2007, 315, 220–222.

3

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

4

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

5

Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation. J. Phys. Chem. C 2007, 111, 19126–19133.

6

Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692–697.

7

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B-Environ. 2005, 56, 9–35.

8

Burda, C.; Chen, X. B.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

9

Rodriguez, J. A.; Goodman, D. W. The nature of the metal-metal bond in bimetallic surfaces. Science 1992, 257, 897–903.

10

Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.

11

Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung, J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

12

Koh, S.; Strasser, P. Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J. Am. Chem. Soc. 2007, 129, 12624–12625.

13

Teng, X. W.; Black, D.; Watkins, N. J.; Gao, Y. L.; Yang, H. Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 2003, 3, 261–264.

14

Teng, X. W.; Yang, H. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles. Nanotechnology 2005, 16, S554–S561.

15

Kashchiev, D. Nucleation: Basic Theory with Applications; Butterworth Heinemann: Oxford, 2000.

DOI
16

Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. Int. Edit. 2005, 44, 2132–2135.

17

Adzic, R. R.; Zhang, J. L.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Platinum monolayer fuel cell electrocatalysts. Top. Catal. 2007, 46, 249–262.

18

Markovic, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X. D.; Villegas, I.; Weaver, M. J. Electrooxidation mechanisms of methanol and formic-acid on Pt-Ru alloy surfaces. Electrochim. Acta 1995, 40, 91–98.

19

Rice, C.; Ha, R. I.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. Direct formic acid fuel cells. J. Power Sources 2002, 111, 83–89.

20

Chen, Y. X.; Heinen, M.; Jusys, Z.; Behm, R. B. Kinetics and mechanism of the electrooxidation of formic acid-Spectroelectrochemical studies in a flow cell. Angew. Chem. Int. Edit. 2006, 45, 981–985.

21

Lovic, J. D.; Tripkovic, A. V.; Gojkovic, S. L. J.; Popovic, K. D.; Tripkovic, D. V.; Olszewski, P.; Kowal, A. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J. Electroanal. Chem. 2005, 581, 294–302.

22

Zhu, Y. M.; Ha, S. Y.; Masel, R. I. High power density direct formic acid fuel cells. J. Power Sources 2004, 130, 8–14.

23

Rice, C.; Ha, S.; Masel, R. I.; Wieckowski, A. Catalysts for direct formic acid fuel cells. J. Power Sources 2003, 115, 229–235.

24

Jeong, K. J.; Miesse, C. A.; Choi, J. H.; Lee, J.; Han, J.; Yoon, S. P.; Nam, S. W.; Lim, T. H.; Lee, T. G. Fuel crossover in direct formic acid fuel cells. J. Power Sources 2007, 168, 119–125.

25

Choi, J. H.; Jeong, K. J.; Dong, Y.; Han, J.; Lim, T. H.; Lee, J. S.; Sung, Y. E. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells. J. Power Sources 2006, 163, 71–75.

26

Capon, A.; Parsons, R. Oxidation of formic-acid at noble-metal electrodes: Part 3. Intermediates and mechanism on platinum-electrodes. J. Electroanal. Chem. 1973, 45, 205–231.

27

Matsumoto, F.; Roychowdhury, C.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation. J. Electrochem. Soc. 2008, 155, B148–B154.

28

Alden, L. R.; Han, D. K.; Matsumoto, F.; Abruna, H. D.; DiSalvo, F. J. Intermetallic PtPb nanoparticles prepared by sodium naphthalide reduction of metal-organic precursors: Electrocatalytic oxidation of formic acid. Chem. Mater. 2006, 18, 5591–5596.

29

Roychowdhury, C.; Matsumoto, F.; Zeldovich, V. B.; Warren, S. C.; Mutolo, P. F.; Ballesteros, M.; Wiesner, U.; Abruna, H. D.; DiSalvo, F. J. Synthesis, characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol. Chem. Mater. 2006, 18, 3365–3372.

30

Casado-Rivera, E.; Volpe, D. J.; Alden, L.; Lind, C.; Downie, C.; Vazquez-Alvarez, T.; Angelo, A. C. D.; DiSalvo, F. J.; Abruna, H. D. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 2004, 126, 4043–4049.

31

Greeley, J.; Norskov, J. K.; Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 2002, 53, 319–348.

32

Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis-Calculations and concepts. Adv. Catal. 2000, 45, 71–129.

33

Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A-Chem. 1997, 115, 421–429.

34

Lee, J. K.; Lee, J.; Han, J.; Lim, T. H.; Sung, Y. E.; Tak, Y. Influence of Au contents of AuPt anode catalyst on the performance of direct formic acid fuel cell. Electrochim. Acta 2008, 53, 3474–3478.

35

Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.

36

Kim, J.; Jung, C.; Rhee, C. K.; Lim, T. H. Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 2007, 23, 10831–10836.

37

Duan, H. W.; Nie, S. M. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers: A new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc. 2007, 129, 2412–2413.

38

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 1994, 801–802.

39

Bauer, E.; Vandermerwe, J. H. Structure and growth of crystalline superlattices-From monolayer to superlattice. Phys. Rev. B 1986, 33, 3657–3671.

40

Porter, D. A.; Easterling, K. E. Phase Transformation in Metals and Alloys; Chapman & Hall: London, 1992.

DOI
41

Chambers, S. A. Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 2000, 39, 105–180.

42

Ji, X. H.; Song, X. N.; Li, J.; Bai, Y. B.; Yang, W. S.; Peng, X. G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948.

43

Hu, M.; Chen, J. Y.; Li, Z. Y.; Au, L.; Hartland, G. V.; Li, X. D.; Marquez, M.; Xia, Y. N. Gold nanostructures: Engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006, 35, 1084–1094.

44

Xia, Y. N.; Halas, N. J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull. 2005, 30, 338–344.

45

Vegard, L.; Dale, H. Untersuchungen ueber Mischkristalle und Legierungen. Zeits. Krist. 1928, 67, 148–162.

46

Peng, Z. M.; Yang, H. Ag-Pt alloy nanoparticles with the compositions in the miscibility gap. J. Solid State Chem. 2008, 181, 1546–1551.

47

Xu, J. B.; Zhao, T. S.; Liang, Z. X. Synthesis of active platinum-silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 2008, 112, 17362–17367.

48

Adhikari, H.; Marshall, A. F.; Goldthorpe, I. A.; Chidsey, C. E. D.; McIntyre, P. C. Metastability of Au–Ge liquid nanocatalysts: Ge vapor–liquid–solid nanowire growth far below the bulk eutectic temperature. ACS Nano 2007, 1, 415–422.

49

Luo, J.; Wang, L. Y.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z. C.; Wanjana, B. N.; Lim, I. S.; Zhong, C. J. Core/shell nanoparticles as electrocatalysts for fuel cell reactions. Adv. Mater. 2008, 20, 4342–4347.

50

Zhao, D.; Xu, B. Q. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts. Phys. Chem. Chem. Phys. 2006, 8, 5106–5114.

51

Zhou, W. P.; Lewera, A.; Larsen, R.; Masel, R. I.; Bagus, P. S.; Wieckowski, A. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 2006, 110, 13393–13398.

52

Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 2006, 110, 12480–12484.

53

Jiang, J.; Kucernak, A. Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. J. Electroanal. Chem. 2002, 520, 64–70.

54

Kristian, N.; Yan, Y. S.; Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 2008, 353–355.

55

Neurock, M.; Janik, M.; Wieckowski, A. A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss. 2008, 140, 363–378.

File
nr-2-5-406_ESM.pdf (289.5 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 January 2009
Revised: 10 March 2009
Accepted: 16 March 2009
Published: 01 May 2009
Issue date: May 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was supported by U.S. National Science Foundation (DMR-0449849). It made use of Shared Experimental Facilities at the University of Rochester River Campus Electron Microscope Lab and at the Cornell Center for Materials Research (CCMR) supported by NSF. We thank Mr. Hongjun You for help.

Rights and permissions

This article is published with open access at Springerlink.com

Return