Journal Home > Volume 2 , Issue 5

Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel 1-D nano-carriers for biomedical, drug delivery and sensing applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Au–Ag Alloy Nanoporous Nanotubes

Show Author's information Xiaohu GuLiqiang XuFang TianYi Ding( )
School of Chemistry and Chemical EngineeringKey Laboratory of Liquid Structure and Heredity of MaterialsMinistry of EducationShandong UniversityJinan250100China

Abstract

Metallic nanostructures with hollow interiors or tailored porosity represent a special class of attractive materials with intriguing chemicophysical properties. This paper presents the fabrication of a new type of metallic nanoporous nanotube structure based on a facile and effective combination of nanocrystal growth and surface modification. By controlling the individual steps involved in this process, such as nanowire growth, surface modification, thermal diffusion, and dealloying, one-dimensional (1-D) metallic nanostructures can be prepared with tailored structural features and pre-designed functionalities. These tubular and porous nanostructures show distinct optical properties, such as tunable absorption in the near-infrared region, and enhanced capability for electrochemiluminescence signal amplification, which make them particularly desirable as novel 1-D nano-carriers for biomedical, drug delivery and sensing applications.

Keywords: gold, optical properties, Nanoporous, nanotube, electrochemiluminescence

References(29)

1

Martin, C. R. Nanomaterials-A membrane-based synthetic approach. Science 1994, 266, 1961–1966.

2

Wirtz, M.; Parker, M.; Kobayashi, Y.; Martin, C. R. Template-synthesized nanotubes for chemical separations and analysis. Chem. Eur. J. 2002, 8, 3572–3578.

DOI
3

Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772–7773.

4

Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: "Ancient technology"/advanced material". Adv. Mater. 2004, 16, 1897–1900.

5

Chen, Z.; Waje, M.; Li, W.; Yan, Y. Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 2007, 46, 4060–4063.

6

Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X. D.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.

7

Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett. 2005, 5, 1569–1574.

8

Hirsch, L. R.; Stafford, R. J.; Bankson, J. A.; Sershen, S. R.; Rivera, B.; Price, R. E.; Hazle, J. D.; Halas, N. J.; West, J. L. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 2003, 100, 13549–13554.

9

Wu, G.; Mikhailovsky, A.; Khant, H. A.; Fu, C.; Chiu, W.; Zasadzinski, J. A. Remotely triggered liposome release by near-infrared light absorption via hollow gold nanoshells. J. Am. Chem. Soc. 2008, 130, 8175–8177.

10

Gao, W.; Xia, X. H.; Xu, J. J.; Chen, H. Y. Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)32+/TPA system with high sensitivity. J. Phys. Chem. C 2007, 111, 12213–12219.

11

Dong, Y. P.; Cui, H.; Wang, C. M. Electrogenerated chemiluminescence of luminol on a gold-nanorod-modified gold electrode. J. Phys. Chem. B 2006, 110, 18408–18414.

12

Yin, X. B.; Qi, B.; Sun, X.; Yang, X.; Wang, E. 4-(dimethylamino)butyric acid labeling for electro-chemiluminescence detection of biological substances by increasing sensitivity with gold nanoparticle amplification. Anal. Chem. 2005, 77, 3525–3530.

13

Laocharoensuk, R.; Sattayasamitsathit, S.; Burdick, J.; Kanatharana, P.; Thavarungkul, P.; Wang, J. Shape-tailored porous gold nanowires: From nano barbells to nano step-cones. ACS Nano 2007, 1, 403–408.

14

Shin, T. Y.; Yoo, S. H.; Park, S. Gold nanotubes with a nanoporous wall: Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation. Chem. Mater. 2008, 20, 5682–5686.

15

Ji, C.; Searson, P. C. Synthesis of nanoporous gold nanowires. J. Phys. Chem. B 2003, 107, 4494–4499.

16

Lahav, M.; Sehayek, T.; Vaskevich, A.; Rubinstein, I. Nanoparticle nanotubes. Angew. Chem. Int. Ed. 2003, 42, 5576–5579.

17

Sehayek, T.; Lahav, M.; Popovitz-Biro, R.; Vaskevich, A.; Rubinstein, I. Template synthesis of nanotubes by room-temperature coalescence of metal nanoparticles. Chem. Mater. 2005, 17, 3743–3748.

18

Sun, Y.; Xia, Y. Multiple-walled nanotubes made of metals. Adv. Mater. 2004, 16, 264–268.

19

Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

20

Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

21

Murphy, C. J.; Sau, T. K.; Gole, A.; Orendorff, C. J. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull. 2005, 30, 349–355.

22

Shibata, T.; Bunker, B. A.; Zhang, Z.; Meisel, D.; Vardeman II, C. F.; Gezelter, J. D. Size-dependent spontaneous alloying of Au-Ag nanoparticles. J. Am. Chem. Soc. 2002, 124, 11989–11996.

23

Kim, F.; Connor, S.; Song, H.; Kuykendall, T.; Yang, P. Platonic gold nanocrystals. Angew. Chem. Int. Ed. 2004, 43, 3673–3677.

24

Seo, D.; Park, J. C.; Song, H. Polyhedral gold nanocrystals with Oh symmetry: From octahedra to cubes. J. Am. Chem. Soc. 2006, 128, 14863–14870.

25

Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269–6275.

26

Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 2006, 89, 061920.

27

Fähnrich, K. A.; Pravda, M.; Guilbault, G. G. Recent applications of electrogenerated chemiluminescence in chemical analysis. Talanta 2001, 54, 531–559.

28

Xu, X. H.; Bard, A. J. Electrogenerated chemi-luminescence. 55. Emission from adsorbed Ru(bpy)32+ on graphite, platinum, and gold. Langmuir 1994, 10, 2409–2414.

29

Ding, Z.; Quinn, B. M.; Haram, S. K.; Pell, L. E.; Korgel, B. A.; Bard, A. J. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 2002, 296, 1293–1297.

File
nr-2-5-386_ESM.pdf (318 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 13 February 2009
Revised: 04 March 2009
Accepted: 05 March 2009
Published: 01 May 2009
Issue date: May 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We thank Wei Liu, Qin Hao, Zhicheng Jü, and Prof.Wenrui Jin for their assistance in making Ag nanowires and in conducting the ECL experiments. This work was supported by the National 863 (2006AA03Z222) and 973(2007CB936602) Program Projects of China, the Natural Science Foundation of Shandong Province (2007ZRB01117, 2006BS04018), and the Key Project of the Ministry of Education of China (108078).Y.D.is a Tai-Shan Scholar supported by the SEM-NCET, and SRF-ROCS Programs and the Shandong Natural Science Fund for Distinguished Young Scholars.

Rights and permissions

This article is published with open access at Springerlink.com

Return