Journal Home > Volume 2 , Issue 5

Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ~900 ℃ or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.


menu
Abstract
Full text
Outline
About this article

Synthesis of WS2 and MoS2 Fullerene-Like Nanoparticles from Solid Precursors

Show Author's information Inna Wiesel1Hamutal Arbel1Ana Albu-Yaron1Ronit Popovitz-Biro2Jeffrey M. Gordon3,4Daniel Feuermann3Reshef Tenne1( )
Department of Materials and InterfacesWeizmann Institute of ScienceRehovot76100Israel
Electron Microscopy UnitWeizmann Institute of ScienceRehovot76100Israel
Department of Solar Energy and Environmental PhysicsJacob Blaustein Institutes for Desert ResearchBen-Gurion University of the NegevBeer Sheva Campus84990Israel
The Pearlstone Center for Aeronautical Engineering StudiesDepartment of Mechanical EngineeringBen-Gurion University of the NegevBeer Sheva84105Israel

Abstract

Inorganic fullerene-like WS2 and MoS2 nanoparticles have been synthesized using exclusively solid precursors, by reaction of the corresponding metal oxide nanopowder, sulfur and a hydrogen-releasing agent (NaBH4 or LiAlH4), achieved either by conventional furnace heating up to ~900 ℃ or by photothermal ablation at far higher temperatures driven by highly concentrated white light. In contrast to the established syntheses that require toxic and hazardous gases, working solely with solid precursors permits relatively safer reactor conditions conducive to industrial scale-up.

Keywords: synthesis, Nanoparticles, fullerene-like, WS2, MoS2

References(39)

1

Tenne, R.; Margulis, L.; Genut, M.; Hodes, G. Polyhedral and cylindrical structures of tungsten disulfide. Nature 1992, 360, 444–446.

2

Margulis, L.; Salitra, G.; Tenne, R.; Talianker, M. Nested fullerene-like structures. Nature 1993, 365, 113–114.

3

Hershfinkel, M.; Gheber, L. A.; Volterra, V.; Hutchison, J. L.; Margulis, L.; Tenne, R. Nested polyhedra of MX2 (M=W, Mo; X=S, Se) probed by high-resolution electron-microscopy and scanning-tunneling-microscopy. J. Am. Chem. Soc. 1994, 116, 1914–1917.

4

Nath, M.; Rao, C. N. R. New metal disulfide nanotubes. J. Am. Chem. Soc. 2001, 123, 4841–4842.

5

Schuffenhauer, C.; Popovitz-Biro, R.; Tenne, R. Synthesis of NbS2 nanoparticles with (nested) fullerene-like structure (IF). J. Mater. Chem. 2002, 12, 1587–1591.

6

Schuffenhauer, C.; Parkinson, B. A.; Jin-Phillipp, N. Y.; Joly-Pottuz, L.; Martin, J. M.; Popovitz-Biro, R.; Tenne, R. Synthesis of fullerene-like tantalum disulfide nanoparticles by a gas-phase reaction and laser ablation. Small 2005, 1, 1100–1109.

7

Margolin, A.; Popovitz-Biro, R.; Albu-Yaron, A.; Rapoport, L.; Tenne, R. Inorganic fullerene-like nanoparticles of TiS2. Chem. Phys. Lett. 2005, 411, 162–166.

8

Coleman, K. S.; Sloan, J.; Hanson, N. A.; Brown, G.; Clancy, G. P.; Terrones, M.; Terrones, H.; Green, M. L. H. The formation of ReS2 inorganic fullerene-like structures containing Re4 parallelogram units and metal-metal bonds. J. Am. Chem. Soc. 2002, 124, 11580–11581.

9

Brorson, M.; Hansen, T. W.; Jacobsen, C. J. H. Rhenium(IV) sulfide nanotubes. J. Am. Chem. Soc. 2002, 124, 11582–11583.

10

Yella, A.; Therese, H. A.; Zink, N.; Panthoefer, M.; Tremel, W. Large scale MOCVD synthesis of hollow ReS2 nanoparticles with nested fullerene-like structure. Chem. Mater. 2008, 20, 3587–3593.

11

Albu-Yaron, A.; Arad, T.; Popovitz-Biro, R.; Bar-Sadan, M.; Prior, Y.; Jansen, M.; Tenne, R. Preparation and structural characterization of stable Cs2O closed-cage structures. Angew. Chem. Int. Ed. 2005, 44, 4169–4172.

12

Avivi, S.; Mastai, Y.; Gedanken, A. A new fullerene-like inorganic compound fabricated by the sonolysis of an aqueous solution of TlCl3. J. Am. Chem. Soc. 2000, 122, 4331–4334.

13

Sallacan, N.; Popovitz-Biro, R.; Tenne, R. Nanoparticles of CdI2 with closed cage structures obtained via electron-beam irradiation. Solid-State Sci. 2003, 5, 905–908.

14

Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron-nitride nanotubes. Science 1995, 269, 966–967.

15

Zhan, J. H.; Bando, Y.; Hu, J. P.; Golberg, D. Bulk synthesis of single-crystalline magnesium oxide nanotubes. Inorg. Chem. 2004, 43, 2462–2464.

16

Fan, H. J.; Gosele, U.; Zacharias, M. Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 2007, 3, 1660–1671.

17

Rao, C. N. R.; Nath, M. Inorganic nanotubes. Dalton Trans. 2003, 1–24.

18

Remskar, M. Inorganic nanotubes. Adv. Mater. 2004, 16, 1497–1504.

19

Tenne, R. Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotechnol. 2006, 1, 103–111.

20

Rapoport, L.; Bilik, Y.; Feldman, Y.; Homyonfer, M.; Cohen, S. R.; Tenne, R. Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 1997, 387, 791–793.

21

Naffakh, M.; Martin, Z.; Fanegas, N.; Marco, C.; Gomez, M. A.; Jimenez, I. Influence of inorganic fullerene-like WS2 nanoparticies on the thermal behavior of isotactic polypropylene. J. Polym. Sci., Part B: Polym. Phys. 2007, 45, 2309–2321.

22

Hou, X. H.; Shan, C. X.; Choy, K. L. Microstructures and tribological properties of PEEK-based nanocomposite coatings incorporating inorganic fullerene-like nanoparticles. Surf. Coat. Technol. 2008, 202, 2287–2291.

23

Parilla, P. A.; Dillon, A. C.; Jones, K. M.; Riker, G.; Schulz, D. L.; Ginley, D. S.; Heben, M. J. The first true inorganic fullerenes? Nature 1999, 397, 114–114.

24

Golberg, D.; Bando, Y.; Stephan, O.; Kurashima, K. Octahedral boron nitride fullerenes formed by electron beam irradiation. Appl. Phys. Lett. 1998, 73, 2441–2443.

25

Jose Yacaman, M.; Lopez, H.; Santiago, P.; Galvan, D. H.; Garzon, I. L.; Reyes, A. Studies of MoS2 structures produced by electron irradiation. Appl. Phys. Lett. 1996, 69, 1065–1067.

26

Remskar, M.; Skraba, Z.; Regula, M.; Ballif, C.; Sanjines, R.; Levy, F. New crystal structures of WS2: Microtubes, ribbons, and ropes. Adv. Mater. 1998, 10, 246–249.

DOI
27

Feldman, Y.; Zak, A.; Popovitz-Biro, R.; Tenne, R. New reactor for production of tungsten disulfide hollow onion-like (inorganic fullerene-like) nanoparticles. Solid-State Sci. 2000, 2, 663–672.

28

Margolin, A.; Rosentsveig, R.; Albu-Yaron, A.; Popovitz-Biro, R.; Tenne, R. Study of the growth mechanism of WS2 nanotubes produced by a fluidized bed reactor. J. Mater. Chem. 2004, 14, 617–624.

29

Zak, A.; Genut, M.; Tenne, R.; Fleischer, N. Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized bed reactors. Nano, in press.

30

Song, X. C.; Zhao, Y.; Zheng, Y. F.; Yang, E. Large-scale synthesis of MoS2 bucky onions. Adv. Eng. Mater. 2007, 9, 96–98.

31

Yang, H. B.; Liu, S. K.; Lil, J. X.; Li, M. H.; Peng, G.; Zou, G. T. Synthesis of inorganic fullerene-like WS2 nanoparticles and their lubricating performance. Nanotechnology 2006, 17, 1512–1519.

32

Albu-Yaron, A.; Arad, T.; Levy, M.; Popovitz-Biro, R.; Tenne, R.; Gordon, J. M.; Feuermann, D.; Katz, E. A.; Jansen, M.; Muhle, C. Synthesis of fullerene-like Cs2O nanoparticles by concentrated sunlight. Adv. Mater. 2006, 18, 2993–2996.

33

Gordon, J. M.; Katz, E. A.; Feuermann, D.; Albu-Yaron, A.; Levy, M.; Tenne, R. Singular MoS2, SiO2 and Si nanostructures-synthesis by solar ablation. J. Mater. Chem. 2008, 18, 458–462.

34

Feuermann, D.; Gordon, J. M. High-irradiance reactors with unfolded aplanatic optics. Appl. Opt. 2008, 47, 5722–5727.

35

Zak, A.; Feldman, Y.; Alperovich, V.; Rosentsveig, R.; Tenne, R. Growth mechanism of MoS2 fullerene-like nanoparticles by gas-phase synthesis. J. Am. Chem. Soc. 2000, 122, 11108–11116.

36

Feldman, Y.; Frey, G. L.; Homyonfer, M.; Lyakhovitskaya, V.; Margulis, L.; Cohen, H.; Hodes, G.; Hutchison, J. L.; Tenne, R. Bulk synthesis of inorganic fullerene-like MS2 (M=Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 1996, 118, 5362–5367.

37

Feldman, Y.; Lyakhovitskaya, V.; Tenne, R. Kinetics of nested inorganic fullerene-like nanoparticle formation. J. Am. Chem. Soc. 1998, 120, 4176–4183.

38

Sarin, V. K. Morphological changes occurring during reduction of WO3. J. Mater. Chem. 1975, 10, 593–598.

39

Hu, J. Q.; Bando, Y.; Zhan, J. H.; Liu, Z. W.; Golberg, D. Uniform and high-quality submicrometer tubes of GaS layered crystals. Appl. Phys. Lett. 2005, 87, 153112.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 January 2009
Revised: 22 February 2009
Accepted: 23 February 2009
Published: 01 May 2009
Issue date: May 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This research was supported by the Gurwin Fund, the Horowitz Foundation, and the Harold Perlman Foundation.The solar and lamp ablation experiments were supported by the Israeli Ministry of Science and Technology (inter-institutional grant 3-3441). The electron microscopy studies were carried out at the Moskovitz Center for Nano and Bio Imaging.R. T.holds the Drake Family Chair in Nanotechnology and is the Director of the Helen and Martin Kimmel Center for Nanoscale Science.

Rights and permissions

This article is published with open access at Springerlink.com

Return