Journal Home > Volume 2 , Issue 5

Supramolecular proteins are generated using a limited set of twenty amino acids, but have distinctive functionalities which arise from the sequential arrangement of amino acids configured to exquisite three-dimensional structures. Viruses, virus-like particles, ferritins, enzyme complexes, cellular micro-compartments, and other supramolecular protein assemblies exemplify these systems, with their precise arrangements of tens to hundreds of molecules into highly organized scaffolds for nucleic acid packaging, metal storage, catalysis or sequestering reactions at the nanometer scale. These versatile protein systems, dubbed as bionanoparticles (BNPs), have attracted materials scientists to seek new opportunities with these pre-fabricated templates in a wide range of nanotechnology-related applications. Here, we focus on some of the key modification strategies that have been utilized, ranging from basic protein conjugation techniques to more novel strategies, to expand the functionalities of these multimeric protein assemblies. Ultimately, in combination with molecular cloning and sophisticated chemistries, these BNPs are being incorporated into many applications ranging from functional materials to novel biomedical drug designs.


menu
Abstract
Full text
Outline
About this article

Viruses and Virus-Like Protein Assemblies——Chemically Programmable Nanoscale Building Blocks

Show Author's information L. Andrew LeeZhongwei NiuQian Wang( )
Department of Chemistry & Biochemistry and NanocenterUniversity of South Carolina631 Sumter StreetColumbiaSC 29208USA

Abstract

Supramolecular proteins are generated using a limited set of twenty amino acids, but have distinctive functionalities which arise from the sequential arrangement of amino acids configured to exquisite three-dimensional structures. Viruses, virus-like particles, ferritins, enzyme complexes, cellular micro-compartments, and other supramolecular protein assemblies exemplify these systems, with their precise arrangements of tens to hundreds of molecules into highly organized scaffolds for nucleic acid packaging, metal storage, catalysis or sequestering reactions at the nanometer scale. These versatile protein systems, dubbed as bionanoparticles (BNPs), have attracted materials scientists to seek new opportunities with these pre-fabricated templates in a wide range of nanotechnology-related applications. Here, we focus on some of the key modification strategies that have been utilized, ranging from basic protein conjugation techniques to more novel strategies, to expand the functionalities of these multimeric protein assemblies. Ultimately, in combination with molecular cloning and sophisticated chemistries, these BNPs are being incorporated into many applications ranging from functional materials to novel biomedical drug designs.

Keywords: nanomaterials, drug delivery, bioimaging, bioconjugation, virus, Bionanoparticles

References(129)

1

Niemeyer, C. M.; Adler, M. Nanomechanical devices based on DNA. Angew. Chem. Int. Ed. 2002, 41, 3779–3783.

DOI
2

Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884.

3

Jaeger, L.; Chworos, A. The architectonics of programmable RNA and DNA nanostructures. Curr. Opin. Struct. Biol. 2006, 16, 531–543.

4

Feldkamp, U.; Niemeyer, C. M. Rational design of DNA nanoarchitectures. Angew. Chem. Int. Ed. 2006, 45, 1856–1876.

5

Seeman, N. C.; Belcher, A. M. Emulating biology: Building nanostructures from the bottom up. Proc. Natl. Acad. Sci. USA 2002, 99, 6451–6455.

6

Dujardin, E.; Mann, S. Bio-inspired materials chemistry. Adv. Eng. Mater. 2002, 4, 461–474.

DOI
7

Seeman, N. C. At the crossroads of chemistry, biology, and materials: Structural DNA nanotechnology. Chem. Biol. 2003, 10, 1151–1159.

8

Yan, H.; LaBean, T. H.; Feng, L.; Reif, J. H. Directed nucleation assembly of DNA tile complexes for barcode-patterned lattices. Proc. Natl. Acad. Sci. USA 2003, 100, 8103–8108.

9

Winfree, E.; Liu, F.; Wenzler, L. A.; Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 1998, 394, 539–544.

10

Ding, B.; Seeman, N. C. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 2006, 314, 1583–1585.

11

Shih, W. M.; Quispe, J. D.; Joyce, G. F. A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature 2004, 427, 618–621.

12

Goodman, R. P.; Schaap, I. A. T.; Tardin, C. F.; Erben, C. M.; Berry, R. M.; Schmidt, C. F.; Turberfield, A. J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science 2005, 310, 1661–1665.

13

Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

14

Chworos, A.; Severcan, I.; Koyfman, A. Y.; Weinkam, P.; Oroudjev, E.; Hansma, H. G.; Jaeger, L. Building programmable jigsaw puzzles with RNA. Science 2004, 306, 2068–2072.

15

Douglas, T.; Young, M. Viruses: Making friends with old foes. Science 2006, 312, 873–875.

16

Kramer, R. M.; Li, C.; Carter, D. C.; Stone, M. O.; Naik, R. R. Engineered protein cages for nanomaterial synthesis. J. Am. Chem. Soc. 2004, 126, 13282–13286.

17

Meldrum, F. C.; Heywood, B. R.; Mann, S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science 1992, 257, 522–523.

18

Flenniken, M. L.; Willits, D. A.; Brumfield, S.; Young, M. J.; Douglas, T. The small heat shock protein cage from Methanococcus jannaschii is a versatile nanoscale platform for genetic and chemical modification. Nano Lett. 2003, 3, 1573–1576.

19

Seebeck, F. P.; Woycechowsky, K. J.; Zhuang, W.; Rabe, J. P.; Hilvert, D. A simple tagging system for protein encapsulation. J. Am. Chem. Soc. 2006, 128, 4516–4517.

20

Domingo, G. J.; Orru, S.; Perham, R. N. Multiple display of peptides and proteins on a macromolecular scaffold derived from a multienzyme complex. J. Mol. Biol. 2001, 305, 259–267.

21

Paavola, C. D.; Chan, S. L.; Li, Y.; Mazzarella, K. M.; McMillan, R. A.; Trent, J. D. A versatile platform for nanotechnology based on circular permutation of a chaperonin protein. Nanotechnology 2006, 17, 1171–1176.

22

Campos, S. K.; Barry, M. A. Current advances and future challenges in adenoviral vector biology and targeting. Curr. Gene Ther. 2007, 7, 189–204.

23

Manchester, M.; Singh, P. Virus-based nanoparticles (VNPs): Platform technologies for diagnostic imaging. Adv. Drug Deliv. Rev. 2006, 58, 1505–1522.

24

Lee, L. A.; Wang, Q. Adaptations of nanoscale viruses and other protein cages for medical applications. Nanomedicine 2006, 2, 137–149.

25

Canizares, M. C.; Nicholson, L.; Lomonossoff, G. P. Use of viral vectors for vaccine production in plants. Immunol. Cell Biol. 2005, 83, 263–270.

26

Ramqvist, T.; Andreasson, K.; Dalanis, T. Vaccination, immune and gene therapy based on virus-like particles against viral infections and cancer. Expert Opin. Biol. Ther. 2007, 7, 997–1007.

27

Streatfield, S. J. Oral hepatitis B vaccine candidates produced and delivered in plant material. Immunol. Cell Biol. 2005, 83, 257–262.

28

Flynn, C. E.; Mao, C.; Hayhurst, A.; Williams, J. L.; Georgiou, G.; Iverson, B.; Belcher, A. M. Synthesis and organization of nanoscale II–III semiconductor materials using evolved peptide specificity and viral capsid assembly. J. Mater. Chem. 2003, 13, 2414–2421.

29

Niu, Z.; Bruckman, M.; Kotakadi, V. S.; He, J.; Emrick, T.; Russell, T. P.; Yang, L.; Wang, Q. Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem. Commun. 2006, 3019–3021.

30

Niu, Z.; Bruckman, M. A.; Li, S.; Lee, L. A.; Lee, B.; Pingali, S. V.; Thiyagarajan, P.; Wang, Q. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays by aniline polymerization on its surface. Langmuir 2007, 23, 6719–6724.

31

Niu, Z.; Liu, J.; Lee, L. A.; Bruckman, M.; Zhao, D.; Koley, G.; Wang, Q. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 2007, 7, 3729–3733.

32

Mao, C.; Flynn, C. E.; Hayhurst, A.; Sweeney, R.; Qi, J.; Georgiou, G.; Iverson, B.; Belcher, A. M. Viral assembly of oriented quantum dot nanowires. Proc. Natl. Acad. Sci. USA 2003, 100, 6946–6951.

33

Niu, Z.; Bruckman, M.; Harp, B.; Mello; C. M.; Wang, Q. Bacteriophage M13 as scaffold for preparing conductive polymeric composite fibers. Nano Res. 2008, 1, 235–241.

34

Rong, J.; Lee, L. A.; Li, K.; Harp, B.; Mello, C. M.; Niu, Z.; Wang, Q. Oriented cells growth on self-assembled bacteriophage M13 thin films. Chem. Commun. 2008, 5185–5187.

35

Aniagyei, S. E.; DuFort, C.; Kao, C. C.; Dragnea, B. Self-assembly approaches to nanomaterial encapsulation in viral protein cages. J. Mater. Chem. 2008, 18, 3763–3774.

36

Singh, P.; Gonzalez, M. J.; Manchester, M. Viruses and their uses in nanotechnology. Drug Dev. Res. 2006, 67, 23–41.

37

Steinmetz, N. F.; Evans, D. J. Utilisation of plant viruses in bionanotechnology. Org. Biomol. Chem. 2007, 5, 2891–2902.

38

Ueno, T. Functionalization of viral protein assemblies by self-assembly reactions. J. Mater. Chem. 2008, 18, 3741–3745.

39

Young, M.; Willits, D.; Uchida, M.; Douglas, T. Plant viruses as biotemplates for materials and their use in nanotechnology. Ann. Rev. Phytopathol. 2008, 46, 361–384.

40

Wang, Q.; Lin, T.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Cysteine-added mutants of cowpea mosaic virus. Chem. Biol. 2002, 9, 813–819.

41

Wang, Q.; Kaltgrad, E.; Lin, T.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Wild-type cowpea mosaic virus. Chem. Biol. 2002, 9, 805–811.

42

Wang, Q.; Lin, T.; Tang, L.; Johnson, J. E.; Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. 2002, 41, 459–462.

DOI
43

Wang, Q.; Raja, K. S.; Janda, K. D.; Lin, T.; Finn, M. G. Blue fluorescent antibodies as reporters of steric accessibility in virus conjugates. Bioconjugate Chem. 2003, 14, 38–43.

44

Raja, K. S.; Wang, Q.; Finn, M. G. Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 2003, 4, 1348–1351.

45

Gillitzer, E.; Willits, D.; Young, M.; Douglas, T. Chemical modification of a viral cage for multivalent presentation. Chem. Commun. 2002, 2390–2391.

46

Hooker, J. M.; Kovacs, E. W.; Francis, M. B. Interior surface modification of bacteriophage MS2. J. Am. Chem. Soc. 2004, 126, 3718–3719.

47

Schlick, T. L.; Ding, Z.; Kovacs, E. W.; Francis, M. B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 2005, 127, 3718–3723.

48

Barnhill, H. N.; Claudel-Gillet, S.; Ziessel, R.; Charbonniere, L. J.; Wang, Q. Prototype protein assembly as scaffold for time-resolved fluoroimmuno assays. J. Am. Chem. Soc. 2007, 129, 7799–7806.

49

Lin, T.; Chen, Z.; Usha, R.; Stauffacher, C. V.; Dai, J. B.; Schmidt, T.; Johnson, J. E. The refined crystal structure of cowpea mosaic virus at 2.8 Å resolution. Virology 1999, 265, 20–34.

50

Chatterji, A.; Ochoa, W. F.; Paine, M.; Ratna, B. R.; Johnson, J. E.; Lin, T. New addresses on an addressable virus nanoblock: Uniquely reactive Lys residues on cowpea mosaic virus. Chem. Biol. 2004, 11, 855–863.

51

Barnhill, H. N.; Reuther, R.; Ferguson, P. L.; Dreher, T.; Wang, Q. Turnip yellow mosaic virus as a chemoaddressable bionanoparticle. Bioconjugate Chem. 2007, 18, 852–859.

52

Taylor, D.; Wang, Q.; Bothner, B.; Natarajan, P.; Finn, M. G.; Johnson, J. E. Correlation of chemical reactivity of Nudaurelia capensis omega virus with a pH-induced conformational change. Chem. Commun. 2003, 2770–2771.

53

Wong, K. K.; Colfen, H.; Whilton, N. T.; Douglas, T.; Mann, S. Synthesis and characterization of hydrophobic ferritin proteins. J. Inorg. Biochem. 1999, 76, 187–195.

54

Wong, K. K. W.; Whilton, N. T.; Douglas, T.; Mann, S.; Colfen, H. Hydrophobic proteins: Synthesis and characterization of organic-soluble alkylated ferritins. Chem. Commun. 1998, 1621–1622.

55

Steinmetz, N. F.; Lomonossoff, G. P.; Evans, D. J. Cowpea mosaic virus for material fabrication: Addressable carboxylate groups on a programmable nanoscaffold. Langmuir 2006, 22, 3488–3490.

56

Hermanson, G. T. Bioconjugate Techniques; Academic Press, Inc. : San Diego, CA, 1996.

DOI
57

Kovacs, E. W.; Hooker, J. M.; Romanini, D. W.; Holder, P. G.; Berry, K. E.; Francis, M. B. Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. Bioconjugate Chem. 2007, 18, 1140–1147.

58

Hooker, J. M.; Datta, A.; Botta, M.; Raymond, K. N.; Francis, M. B. Magnetic resonance contrast agents from viral capsid shells: A comparison of exterior and interior cargo strategies. Nano Lett. 2007, 7, 2207–2210.

59

Datta, A.; Hooker, J. M.; Botta, M.; Francis, M. B.; Aime, S.; Raymond, K. N. High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: Nanosized MRI contrast agents. J. Am. Chem. Soc. 2008, 130, 2546–2552.

60

Lin, T. Structural genesis of the chemical addressability of a viral nano-block. J. Mater. Chem. 2006, 16, 3673–3681.

61

Chatterji, A.; Ochoa, W. F.; Shamieh, L.; Salakian, S. P.; Wong, S. M.; Clinton, G.; Ghosh, P.; Lin, T.; Johnson, J. E. Chemical conjugation of heterologous proteins on the surface of cowpea mosaic virus. Bioconjugate Chem. 2004, 15, 807–813.

62

Blum, A. S.; Soto, C. M.; Wilson, C. D.; Cole, J. D.; Kim, M.; Gnade, B.; Chatterji, A.; Ochoa, W. F.; Lin, T. W.; Johnson, J. E.; Ratna, B. R. Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett. 2004, 4, 867–870.

63

Flenniken, M. L.; Liepold, L. O.; Crowley, B. E.; Willits, D.; Young, M.; Douglas, T. Selective attachment and release of a chemotherapeutic agent from the interior of a protein cage architecture. Chem. Commun. 2005, 447–449.

64

Yi, H.; Rubloff, G. W.; Culver, J. N. TMV microarrays: Hybridization-based assembly of DNA-programmed viral nanotemplates. Langmuir 2007, 23, 2663–2667.

65

Yi, H. M.; Nisar, S.; Lee, S. Y.; Powers, M. A.; Bentley, W. E.; Payne, G. F.; Ghodssi, R.; Rubloff, G. W.; Harris, M. T.; Culver, J. N. Patterned assembly of genetically modified viral nanotemplates via nucleic acid hybridization. Nano Lett. 2005, 5, 1931–1936.

66

Miller, R. A.; Presley, A. D.; Francis, M. B. Self-assembling light-harvesting systems from synthetically modified tobacco mosaic virus coat proteins. J. Am. Chem. Soc. 2007, 129, 3104–3109.

67

Kaltgrad, E.; Sen Gupta, S.; Punna, S.; Huang, C. Y.; Chang, A.; Wong, C. H.; Finn, M. G.; Blixt, O. Anti-carbohydrate antibodies elicited by polyvalent display on a viral scaffold. ChemBioChem 2007, 8, 1455–1462.

68

Miermont, A.; Barnhill, H.; Strable, E.; Lu, X. W.; Wall, K. A.; Wang, Q.; Finn, M. G.; Huang, X. F. Cowpea mosaic virus capsid: A promising carrier for the development of carbohydrate based antitumor vaccines. Chem. Eur. J. 2008, 14, 4939–4947.

69

Kaltgrad, E.; O'Reilly, M. K.; Liao, L. A.; Han, S. F.; Paulson, J. C.; Finn, M. G. On-virus construction of polyvalent glycan ligands for cell-surface receptors. J. Am. Chem. Soc. 2008, 130, 4578–4579.

70

Gleiter, S.; Lilie, H. Cell-type specific targeting and gene expression using a variant of polyoma VP1 virus-like particles. Biol. Chem. 2003, 384, 247–255.

71

Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. A stepwise Huisgen cycloaddition process: Copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41, 2596–2599.

DOI
72

Antos, J. M.; Francis, M. B. Transition metal catalyzed methods for site-selective protein modification. Curr. Opin. Chem. Biol. 2006, 10, 253–262.

73

Tornoe, C. W.; Christensen, C.; Meldal, M. Peptidotriazoles on solid phase: [1, 2, 3]-triazoles by regiospecific copper(I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67, 3057–3064.

74

Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. Discovery and characterization of catalysts for azide-alkyne cycloaddition by fluorescence quenching. J. Am. Chem. Soc. 2004, 126, 9152–9153.

75

Sen Gupta, S.; Kuzelka, J.; Singh, P.; Lewis, W. G.; Manchester, M.; Finn, M. G. Accelerated bioorthogonal conjugation: A practical method for the ligation of diverse functional molecules to a polyvalent virus scaffold. Bioconjugate Chem. 2005, 16, 1572–1579.

76

Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. Bioconjugation by copper(I)-catalyzed azide-alkyne [3+2]cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193.

77

Zeng, Q.; Li, T.; Cash, B.; Li, S.; Xie, F.; Wang, Q. Chemoselective derivatization of a bionanoparticle by click reaction and ATRP reaction. Chem. Commun. 2007, 1453–1455.

78

Bruckman, M. A.; Kaur, G.; Lee, L. A.; Xie, F.; Sepulveda, J.; Breitenkamp, R.; Zhang, X.; Joralemon, M.; Russell, T. P.; Emrick, T.; Wang, Q. Surface modification of tobacco mosaic virus with "click" chemistry. ChemBioChem 2008, 9, 519–523.

79

Prasuhn, D. E.; Singh, P.; Strable, E.; Brown, S.; Manchester, M.; Finn, M. G. Plasma clearance of bacteriophage Qβ particles as a function of surface charge. J. Am. Chem. Soc. 2008, 130, 1328–1334.

80

Xie, F.; Sivakumar, K.; Zeng, Q.; Bruckman, M. A.; Hodges, B.; Wang, Q. A fluorogenic "click" reaction of azidoanthracene derivatives. Tetrahedron 2008, 64, 2906–2914.

81

Tilley, S. D.; Francis, M. B. Tyrosine-selective protein alkylation using π-allylpalladium complexes. J. Am. Chem. Soc. 2006, 128, 1080–1081.

82

Meunier, S.; Strable, E.; Finn, M. G. Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem. Biol. 2004, 11, 319–326.

83

Sapsford, K. E.; Soto, C. M.; Blum, A. S.; Chatterji, A.; Lin, T.; Johnson, J. E.; Ligler, F. S.; Ratna, B. R. A cowpea mosaic virus nanoscaffold for multiplexed antibody conjugation: Application as an immunoassay tracer. Biosens. Bioelectron. 2006, 21, 1668–1673.

84

Soto, C. M.; Blum, A. S.; Vora, G. J.; Lebedev, N.; Meador, C. E.; Won, A. P.; Chatterji, A.; Johnson, J. E.; Ratna, B. R. Fluorescent signal amplification of carbocyanine dyes using engineered viral nanoparticles. J. Am. Chem. Soc. 2006, 128, 5184–5189.

85

Flenniken, M. L.; Willits, D. A.; Harmsen, A. L.; Liepold, L. O.; Harmsen, A. G.; Young, M. J.; Douglas, T. Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. Chem. Biol. 2006, 13, 161–170.

86

Tan, W. S.; Lewis, C. L.; Horelik, N. E.; Pregibon, D. C.; Doyle, P. S.; Yi, H. Hierarchical assembly of viral nanotemplates with encoded microparticles via nucleic acid hybridization. Langmuir 2008, 24, 12483–12488.

87

Destito, G.; Yeh, R.; Rae, C. S.; Finn, M. G.; Manchester, M. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells. Chem. Biol. 2007, 14, 1152–1162.

88

Douglas, T.; Young, M. Host-guest encapsulation of materials by assembled virus protein cages. Nature 1998, 393, 152–155.

89

Allen, M.; Willits, D.; Mosolf, J.; Young, M.; Douglas, T. Protein cage constrained synthesis of ferrimagnetic iron oxide nanoparticles. Adv. Mater. 2002, 14, 1562–1565.

DOI
90

Allen, M.; Willits, D.; Young, M.; Douglas, T. Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg. Chem. 2003, 42, 6300–6305.

91

Douglas, T.; Strable, E.; Willits, D.; Aitouchen, A.; Libera, M.; Young, M. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv. Mater. 2002, 14, 415–418.

DOI
92

Wong, K. K. W.; Douglas, T.; Gider, S.; Awschalom, D. D.; Mann, S. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem. Mater. 1998, 10, 279–285.

93

Douglas, T.; Stark, V. T. Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorg. Chem. 2000, 39, 1828–1830.

94

Ensign, D.; Young, M.; Douglas, T. Photocatalytic synthesis of copper colloids from Cu(II) by the ferrihydrite core of ferritin. Inorg. Chem. 2004, 43, 3441–3446.

95

Fowler, C. E.; Shenton, W.; Stubbs, G.; Mann, S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv. Mater. 2001, 13, 1266–1269.

DOI
96

Shenton, W.; Douglas, T.; Young, M.; Stubbs, G.; Mann, S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv. Mater. 1999, 11, 253–256.

DOI
97

Fonoberov, V. A.; Balandin, A. A. Phonon confinement effects in hybrid virus-inorganic nanotubes for nanoelectronic applications. Nano Lett. 2005, 5, 1920–1923.

98

Royston, E.; Lee, S. Y.; Culver, J. N.; Harris, M. T. Characterization of silica-coated tobacco mosaic virus. J Colloid Interface Sci. 2006, 298, 706–712.

99

Knez, M.; Bittner, A. M.; Boes, F.; Wege, C.; Jeske, H.; Maiβ, E.; Kern, K. Biotemplate synthesis of 3-nm nickel and cobalt nanowires. Nano Lett. 2003, 3, 1079–1082.

100

Knez, M.; Kadri, A.; Wege, C.; Gosele, U.; Jeske, H.; Nielsch, K. Atomic layer deposition on biological macromolecules: Metal oxide coating of tobacco mosaic virus and ferritin. Nano Lett. 2006, 6, 1172–1177.

101

Knez, M.; Sumser, M.; Bittner, A. M.; Wege, C.; Jeske, H.; Martin, T. P.; Kern, K. Spatially selective nucleation of metal clusters on the tobacco mosaic virus. Adv. Funct. Mater. 2004, 14, 116–124.

102

Knez, M.; Sumser, M. P.; Bittner, A. M.; Wege, C.; Jeske, H.; Hoffmann, D. M. P.; Kuhnke, K.; Kern, K. Binding the tobacco mosaic virus to inorganic surfaces. Langmuir 2004, 20, 441–447.

103

Lee, S. Y.; Royston, E.; Culver, J. N.; Harris, M. T. Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template. Nanotechnology 2005, 16, S435–S441.

104

Brown, S. Engineered iron oxide-adhesion mutants of the Escherichia coli phage receptor. Proc. Natl. Acad. Sci. USA. 1992, 89, 8651–8655.

105

Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature 2000, 405, 665–668.

106

Lee, S. W.; Mao, C.; Flynn, C. E.; Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 2002, 296, 892–895.

107

Flynn, C. E.; Mao, C. B.; Hayhurst, A.; Williams, J. L.; Georgiou, G.; Iverson, B.; Belcher, A. M. Synthesis and organization of nanoscale II–IV semiconductor materials using evolved peptide specificity and viral capsid assembly. J. Mater. Chem. 2003, 13, 2414–2421.

108

Nam, K. T.; Peelle, B. R.; Lee, S. -W.; Belcher, A. M. Genetically driven assembly of nanorings based on the M13 virus. Nano Lett. 2004, 4, 23–27.

109

Lee, S. W.; Belcher, A. M. Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Lett. 2004, 4, 387–390.

110

Lee, S. W.; Wood, B. M.; Belcher, A. M. Chiral smectic C structures of virus-based films. Langmuir 2003, 19, 1592–1598.

111

Lee, S. W.; Lee, S. K.; Belcher, A. M. Virus-based alignment of inorganic, organic, and biological nanosized materials. Adv. Mater. 2003, 15, 689–692.

112

Flynn, C. E.; Lee, S. W.; Peelle, B. R.; Belcher, A. M. Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 2003, 51, 5867–5880.

113

Souza, G. R.; Christianson, D. R.; Staquicini, F. I.; Ozawa, M. G.; Snyder, E. Y.; Sidman, R. L.; Houston Miller, J.; Arap, W.; R., P. Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents. Proc. Natl. Acad. Sci. USA 2006, 103, 1215–1220.

114

Huang, Y.; Chiang, C. Y.; Lee, S. K.; Gao, Y.; Hu, E. L.; De Yoreo, J.; Belcher, A. M. Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 2005, 5, 1429–1434.

115

Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

116

Carette, N.; Engelkamp, H.; Akpa, E.; Pierre, S. J.; Cameron, N. R.; Christianen, P. C. M.; Maan, J. C.; Thies, J. C.; Weberskirch, R.; Rowan, A. E.; Nolte, R. J. M.; Michon, T.; Van Hest, J. C. M. A virus-based biocatalyst. Nat. Nanotechnol. 2007, 2, 226–229.

117

Comellas-Aragones, M.; Engelkamp, H.; Claessen, V. I.; Sommerdijk, N.; Rowan, A. E.; Christianen, P. C. M.; Maan, J. C.; Verduin, B. J. M.; Cornelissen, J.; Nolte, R. J. M. A virus-based single-enzyme nanoreactor. Nat. Nanotechnol. 2007, 2, 635–639.

118

Sun, J.; DuFort, C.; Daniel, M. C.; Murali, A.; Chen, C.; Gopinath, K.; Stein, B.; De, M.; Rotello, V. M.; Holzenburg, A.; Kao, C. C.; Dragnea, B. Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA. 2007, 104, 1354–1359.

119

Chen, C.; Daniel, M. -C.; Quinkert, Z. T.; De, M.; Stein, B.; Bowman, V. D.; Chipman, P. R.; Rotello, V. M.; Kao, C. C.; Dragnea, B. Nanoparticle-templated assembly of viral protein cages. Nano Lett. 2006, 6, 611–615.

120

Dixit, S. K.; Goicochea, N. L.; Daniel, M. -C.; Murali, A.; Bronstein, L.; De, M.; Stein, B.; Rotello, V. M.; Kao, C. C.; Dragnea, B. Quantum dot encapsulation in viral capsids. Nano Lett. 2006, 6, 1993–1999.

121

Huang, X.; Bronstein, L. M.; Retrum, J.; Dufort, C.; Tsvetkova, I.; Aniagyei, S.; Stein, B.; Stucky, G.; McKenna, B.; Remmes, N.; Baxter, D.; Kao, C. C.; Dragnea, B. Self-assembled virus-like particles with magnetic cores. Nano Lett. 2007, 7, 2407–2416.

122

Loo, L.; Guenther, R. H.; Basnayake, V. R.; Lommel, S. A.; Franzen, S. Controlled encapsidation of gold nanoparticles by a viral protein shell. J. Am. Chem. Soc. 2006, 128, 4502–4503.

123

Loo, L.; Guenther, R. H.; Lommel, S. A.; Franzen, S. Infusion of dye molecules into red clover necrotic mosaic virus. Chem. Commun. 2008, 88–90.

124

Fischlechner, M.; Reibetanz, U.; Zaulig, M.; Enderlein, D.; Romanova, J.; Leporatti, S.; Moya, S.; Donath, E. Fusion of enveloped virus nanoparticles with polyelectrolyte-supported lipid membranes for the design of bio/nonbio interfaces. Nano Lett. 2007, 7, 3540–3546.

125

Fischlechner, M.; Toellner, L.; Messner, P.; Grabherr, R.; Donath, E. Virus-engineered colloidal particles-A surface display system. Angew. Chem. Int. Ed. 2006, 45, 784–789.

126

Li, T.; Niu, Z. W.; Emrick, T.; Russell, T. R.; Wang, Q. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. Small 2008, 4, 1624–1629.

127

Lin, Y.; Su, Z.; Niu, Z.; Li, S.; Kaur, G.; Lee, L. A.; Wang, Q. Layer-by-layer assembly of viral capsid for cell adhesion. Acta Biomater. 2008, 4, 838–843.

128

Steinmetz, N. F.; Findlay, K. C.; Noel, T. R.; Parker, R.; Lomonossoff, G. R.; Evans, D. J. Layer-by-layer assembly of viral nanoparticles and polyelectrolytes: The film architecture is different for spheres versus rods. ChemBioChem 2008, 9, 1662–1670.

129

Yoo, P. J.; Nam, K. T.; Belchert, A. M.; Hammond, P. T. Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies. Nano Lett. 2008, 8, 1081–1089.

Publication history
Copyright
Rights and permissions

Publication history

Received: 07 January 2009
Revised: 15 February 2009
Accepted: 16 February 2009
Published: 01 May 2009
Issue date: May 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Rights and permissions

This article is published with open access at Springerlink.com

Return