Journal Home > Volume 2 , Issue 4

A novel hybrid material prepared from graphene and poly (3, 4-ethyldioxythiophene) (PEDOT) shows excellent transparency, electrical conductivity, and good flexibility, together with high thermal stability and is easily processed in both water and organic solvents. Conductivities of the order of 0.2 S/cm and light transmittance of greater than 80% in the 400–1800 nm wavelength range were observed for films with thickness of tens of nm. Practical applications in a variety of optoelectronic devices are thus expected for this transparent and flexible conducting graphene-based hybrid material.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A Hybrid Material of Graphene and Poly (3, 4-ethyldioxythiophene) with High Conductivity, Flexibility, and Transparency

Show Author's information Yanfei XuYan WangJiajie LiangYi HuangYanfeng MaXiangjian WanYongsheng Chen( )
Key Laboratory for Functional Polymer Materials and Centre for Nanoscale Science and TechnologyInstitute of Polymer Chemistry, College of Chemistry, Nankai UniversityTianjin300071China

Abstract

A novel hybrid material prepared from graphene and poly (3, 4-ethyldioxythiophene) (PEDOT) shows excellent transparency, electrical conductivity, and good flexibility, together with high thermal stability and is easily processed in both water and organic solvents. Conductivities of the order of 0.2 S/cm and light transmittance of greater than 80% in the 400–1800 nm wavelength range were observed for films with thickness of tens of nm. Practical applications in a variety of optoelectronic devices are thus expected for this transparent and flexible conducting graphene-based hybrid material.

Keywords: stability, conductivity, flexibility, Graphene–poly (3, 4-ethyldioxythiophene) (PEDOT) optical transparency

References(26)

1

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

2

Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.

3

Wang, X.; Zhi, L. J.; Tsao, N.; Tomovic, Z.; Li, J. L.; Müllen, K. Transparent carbon films as electrodes in organic solar cells. Angew. Chem, Int. Ed. 2008, 47, 2990–2992.

4

Patil, A. O.; Heeger, A. J.; Wudl, F. Optical properties of conducting polymers. Chem. Rev. 1988, 88, 183–200.

5

Frommer, J. E. Conducting polymer solutions. Acc. Chem. Res. 1986, 19, 2–9.

6

Heeger, A. J. Semiconducting and metallic polymers: The fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611.

DOI
7

MacDiarmid, A. G. Synthetic metals: A novel role for organic polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2581–2590.

DOI
8

Groenendaal, B. L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly (3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future. Adv. Mater. 2000, 12, 481–494.

DOI
9

Fan, B. H.; Mei, X. G.; Ouyang, J. Y. Significant conductivity enhancement of conductive poly (3, 4-ethylenedioxythiophene) : Poly (styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules 2008, 41, 5971–5973.

10

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

11

Liu, Z.; Liu, Q.; Huang, Y.; Ma, Y.; Yin, S.; Zhang, X.; Sun, W.; Chen, Y. Organic photovoltaic devices based on a novel acceptor material: Graphene. Adv. Mater. 2008, 20, 3924–3930.

12
Jonas, F.; Krafft, W. Eur. Patent 440957 to Bayer AG, 1991.
13

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Caro, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

14

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

15

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

16

Niyogi, S.; Bekyarova, E.; Itkis, M. E.; McWilliams, J. L.; Hamon, M. A.; Haddon, R. C. Solution properties of graphite and graphene. J. Am. Chem. Soc. 2006, 128, 7720–7721.

17

Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342–3347.

18

Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.

19

Fan, X.; Peng, W.; Li, Y.; Li, X.; Wang, S.; Zhang, G.; Zhang, F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation. Adv. Mater. 2008, 20, 4490–4493.

20

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

21

Si, Y.; Samulski, E. T. Synthesis of water soluble graphene. Nano Lett. 2008, 8, 1679–1682.

22

Yi, B.; Rajagopalan, R.; Foley, H. C.; Kim, U. J.; Liu, X. M.; Eklund, P. C. Catalytic polymerization and facile grafting of poly (furfuryl alcohol) to single-wall carbon nanotube: preparation of nanocomposite carbon. J. Am. Chem. Soc. 2006, 128, 11307–11313.

23

Han, M. G.; Foulger, S. H. 1-Dimensional structures of poly (3, 4-ethylenedioxythiophene) (PEDOT) : A chemical route to tubes, rods, thimbles, and belts. Chem. Commun. 2005, 3092–3094.

24

Kvarnstrom, C.; Neugebauer, H.; Ivaska, A.; Sariciftci, N. S. Vibrational signatures of electrochemical p- and n-doping of poly (3, 4-ethylenedioxythiophene) films: An in situ attenuated total reflection Fourier transform infrared (ATR-FTIR) study. J. Mol. Struct. 2000, 521, 271–277.

25

Guo, Z.; Du, F.; Ren, D.; Chen, Y.; Zheng, J.; Liu, Z.; Tian, J. Covalently porphyrin-functionalized single-walled carbon nanotubes: A novel photoactive and optical limiting donor-acceptor nanohybrid. J. Mater. Chem. 2006, 16, 3021–3030.

26

Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

File
nr-2-4-343_ESM.pdf (384.5 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 January 2009
Revised: 18 February 2009
Accepted: 18 February 2009
Published: 01 April 2009
Issue date: April 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the Natural Science Foundation of china (NSFC) (#20774047), the Ministry of Science and Techology of china (MoST) (#2006CB932702), and natural Science Foundation (NSF) of Tianjin City (#07JCYBJC03000, #08JCZDJC25300).

Rights and permissions

This article is published with open access at Springerlink.com

Return