Journal Home > Volume 2 , Issue 4

Chemically derived and noncovalently functionalized graphene sheets (GS) were found to self-assemble onto patterned gold structures via electrostatic interactions between the functional groups and the gold surfaces. This afforded regular arrays of single graphene sheets on large substrates, which were characterized by scanning electron microscopy (SEM), Auger microscopy imaging, and Raman spectroscopy. This represents the first time that self-assembly has been used to produce on-substrate and fully-suspended graphene electrical devices. Molecular coatings on the GS were removed by high current "electrical annealing", which restored the high electrical conductance and Dirac point of the GS. Molecular sensors for highly sensitive gas detection using the self-assembled GS devices are demonstrated.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chemical Self-Assembly of Graphene Sheets

Show Author's information Hailiang WangXinran WangXiaolin LiHongjie Dai( )
Department of Chemistry and Laboratory for Advanced MaterialsStanford UniversityStanford, CA94305USA

Abstract

Chemically derived and noncovalently functionalized graphene sheets (GS) were found to self-assemble onto patterned gold structures via electrostatic interactions between the functional groups and the gold surfaces. This afforded regular arrays of single graphene sheets on large substrates, which were characterized by scanning electron microscopy (SEM), Auger microscopy imaging, and Raman spectroscopy. This represents the first time that self-assembly has been used to produce on-substrate and fully-suspended graphene electrical devices. Molecular coatings on the GS were removed by high current "electrical annealing", which restored the high electrical conductance and Dirac point of the GS. Molecular sensors for highly sensitive gas detection using the self-assembled GS devices are demonstrated.

Keywords: self-assembly, Chemically derived graphene sheets, graphene devices, electrical annealing

References(30)

1

Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

2

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

3

Liu, Y. L.; Li, H. X.; Tu, D. Y.; Ji, Z. Y.; Wang, C. S.; Tang, Q. X.; Liu, M.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. J. Am. Chem. Soc. 2006, 128, 12917–12922.

4

Dai, H. Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 2002, 35, 1035–1044.

5

Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438, 201–204.

6

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

7

Wang, X. R.; Ouyang, Y. J.; Li, X. L.; Wang, H. L.; Guo, J.; Dai, H. J. Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys. Rev. Lett. 2008, 100, 206803.

8

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

9

Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

10

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

11

Sutter, P. W.; Flege, J; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

12

Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101–105.

13

Gomez-Navarro, C.; Weitz, R. T.; Bittner, A. M.; Scolari, M.; Mews, A.; Burghard, M.; Kern, K. Electronic transport properties of individual chemically reduced graphene xxide sheets. Nano Lett. 2007, 7, 3499–3503.

14

Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M; Wang, X. R.; Wang, E. G.; Dai, H. J. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

15

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

16

Wei, Z. Q.; Barlow, D. E.; Sheehan, P. E. The assembly of single-layer graphene oxide and graphene using molecular templates. Nano Lett. 2008, 8, 3141–3145.

17

Liu, Z. H.; Wang, Z. M.; Yang, X. J.; Ooi, K. Intercalation of organic ammonium ions into layered graphite oxide. Langmuir 2002, 18, 4926–4932.

18

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

19

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

20

Chen, S. M.; Liu, Y. D.; Wu, G. Z. Stabilized and size-tunable gold nanoparticles formed in a quaternary ammonium-based room-temperature ionic liquid under-irradiation Nanotechnology 2005, 16, 2360–2364.

21

Tymosiak-Zieliska, A.; Borkowska, Z. Interfacial properties of polycrystalline gold electrodes in tetraalkylammonium electrolytes. Electrochim. Acta 2001, 46, 3073–3082.

22

Biggs, S.; Mulvaney, P.; Zukoski, C. F.; Grieser, F. Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy. J. Am. Chem. Soc. 1994, 116, 9150–9157.

23

Bockris, J. O'M.; Paik, W. K.; Genshaw, M. A. Adsorption of anions at the solid-solution interface. Ellipsometric study J. Phys. Chem. 1970, 74, 4266–4275.

24

Moser, J.; Barreiro, A.; Bachtold, A. Current-induced cleaning of graphene. Appl. Phys. Lett. 2007, 91, 163513.

25

Garcia-Sanchez, D.; van der Zande, A. M.; San Paulo, A.; Lassagne, B.; McEuen, P. L.; Bachtold, A. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 2008, 8, 1399–1403.

26

Gómez-Navarro, C.; Burghard, M.; Kern, K. Elastic properties of chemically derived single graphene sheets. Nano Lett. 2008, 8, 2045–2049.

27

Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493.

28

Miao, F.; Wijeratne, S.; Zhang, Y.; Coskun, U.; Bao, W.; Lau, C. N. Phase-coherent transport in graphene quantum billiards. Science 2007, 317, 1530–1533.

29

Kong, J.; Franklin, N.; Zhou, C. W.; Chapline, M. G.; Pan, S.; Cho, K. J.; Dai, H. J. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

30

Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA. 2003, 100, 4984–4989.

File
nr-2-4-336_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 January 2009
Revised: 19 February 2009
Accepted: 19 February 2009
Published: 01 April 2009
Issue date: April 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work is supported by MARCO-MSD, ONR, and Intel.

Rights and permissions

This article is published with open access at Springerlink.com

Return