Journal Home > Volume 2 , Issue 4

We describe a nanocrystal self-assembly method for the preparation of rare earth fluoride nanotube (ReF-NT) arrays and magnetite-doped rare earth fluoride nanotubes (Fe3O4–ReF-NTs) by using porous anodic aluminum oxide (AAO) as a hard template. The ReF-NTs can be simply prepared by the impregnation of α-NaYF4 nanocrystals doped with Yb and Er into the channels of the porous AAO and show a highly ordered nanotube array and excellent upconversion (UC) fluorescence properties. Similarly, the Fe3O4–ReF-NTs are obtained by the self-assembly of a mixture of Fe3O4 and Yb/Er doped α-NaYF4 nanocrystals in the AAO pore channels and have a uniform dispersion of magnetite nanocrystals on the rare earth fluoride tube matrix and possess multifunctional magnetic/UC properties. The diameter of these nanotubes can be varied from 60 nm to several micrometers depending on the pore size of the AAO template. The wall thickness can be increased from 10 to 35 nm by increasing the concentration of nanocrystals from 0.02 to 0.4 mmol/L, while the morphology of the nanotubes can be varied from small isolated domain structures to percolating domains and eventually to compact domains. A template-directed formation mechanism is proposed and the quantitative predictions of the model for such self-assembled nanocrystal spreading processes are demonstrated. Strong UC fluorescent emissions are realized for the nanotube arrays and multifunctional nanotubes with UC excitation in the near-infrared (NIR) region. A strong magnetic response of the multifunctional nanotubes is observed, which facilitates their easy separation from solution by magnetic decantation using a permanent magnet.


menu
Abstract
Full text
Outline
About this article

Fabrication of Ordered Magnetite-Doped Rare Earth Fluoride Nanotube Arrays by Nanocrystal Self-Assembly

Show Author's information Fan ZhangDongyuan Zhao( )
Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsDepartment of Chemistry, and Laboratory of Advanced Materials, Fudan UniversityShanghai200433China

Abstract

We describe a nanocrystal self-assembly method for the preparation of rare earth fluoride nanotube (ReF-NT) arrays and magnetite-doped rare earth fluoride nanotubes (Fe3O4–ReF-NTs) by using porous anodic aluminum oxide (AAO) as a hard template. The ReF-NTs can be simply prepared by the impregnation of α-NaYF4 nanocrystals doped with Yb and Er into the channels of the porous AAO and show a highly ordered nanotube array and excellent upconversion (UC) fluorescence properties. Similarly, the Fe3O4–ReF-NTs are obtained by the self-assembly of a mixture of Fe3O4 and Yb/Er doped α-NaYF4 nanocrystals in the AAO pore channels and have a uniform dispersion of magnetite nanocrystals on the rare earth fluoride tube matrix and possess multifunctional magnetic/UC properties. The diameter of these nanotubes can be varied from 60 nm to several micrometers depending on the pore size of the AAO template. The wall thickness can be increased from 10 to 35 nm by increasing the concentration of nanocrystals from 0.02 to 0.4 mmol/L, while the morphology of the nanotubes can be varied from small isolated domain structures to percolating domains and eventually to compact domains. A template-directed formation mechanism is proposed and the quantitative predictions of the model for such self-assembled nanocrystal spreading processes are demonstrated. Strong UC fluorescent emissions are realized for the nanotube arrays and multifunctional nanotubes with UC excitation in the near-infrared (NIR) region. A strong magnetic response of the multifunctional nanotubes is observed, which facilitates their easy separation from solution by magnetic decantation using a permanent magnet.

Keywords: self-assembly, synthesis, nanocrystals, Nanotubes, upconversion luminescence, magnetic, rare earth fluorides

References(47)

1

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Brian, M.; Byron, G.; Yin, Y. D.; Franklin, K.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

2

Wang, X. D.; Song, J. H.; Wang, Z. L. Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. J. Mater. Chem. 2007, 17, 711–720.

3

Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Room-temperature ultraviolet nanowire nanolasers. Science 2001, 292, 1897–1899.

4

Rumbles, G. Solid-state optics: A laser that turns down the heat. Nature 2001, 409, 572–573.

5

Downing, E.; Hesselink, L.; Ralston, J.; Macfarlane, R. A three-color, solid-state, three-dimensional display. Science 1996, 273, 1185–1189.

6

Law, M.; Greene, L. E.; Johnson, J.; Saykally, C. R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–458.

7

van de Rijke, F.; Zijlmans, H.; Li, S.; Vail, T.; Raap, A. K. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotech. 2001, 19, 273–276.

8

Giesber, H.; Ballato, J.; Chumanov, G.; Kolis, J.; Dejneka, M. Spectroscopic properties of Er3+ and Eu3+-doped acentric LaBO3 and GdBO3. J. Appl. Phys. 2003, 93, 8987–8991.

9

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

10

Yi, G. S.; Lu, H. C.; Zhao, S. Y.; Ge Y.; Yang, W. J.; Chen, D. P.; Guo, L. H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196.

11

Heer, S.; Kompe, K.; Gudel, H. U.; Haase, M. Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 2004, 16, 2102–2105.

12

Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

13

Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+and Tm3+, Yb3+via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445.

14

Zhang, F.; Wan, Y.; Ying, T.; Zhang, F. Q.; Shi, Y. F.; Xie, S. H.; Li, Y. G.; Xu, L.; Tu, B.; Zhao, D. Y. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. Int. Ed. 2007, 46, 7976–7979.

15

Zhang, F.; Wan, Y.; Shi, Y. F.; Tu, B.; Zhao, D. Y. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence. Chem. Mater. 2007, 20, 3778–3784.

16

Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y. F.; Saykally, R. J.; Yang, P. D. Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 2003, 42, 3031–3034.

17

Vayssieres, L.; Keis, K.; Lindquist, S. E.; Hagfeldt, A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO. J. Phys. Chem. B 2001, 105, 3350–3352.

18

Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S. K.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

19

Vayssieres, L. Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 2003, 15, 464–466.

20

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters. Science 1996, 273, 1690–1693.

21

Alivisators, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

22

Shi, J.; Gider, S.; Babcock, K.; Awschalom, D. D. Magnetic clusters in molecular beams, metals, and semiconductors. Science 1996, 271, 937–941.

23

Kagan, C. R.; Murry, C. B.; Nirmal, M.; Bawendi, M. G. Electronic energy transfer in CdSe quantum dot solids. Phys. Rev. Lett. 1996, 76, 1517–1520.

24

Harfenist, S. A.; Wang, Z. L.; Alvarez, M. A.; Vezmar, I.; Whetten, R. L. Highly oriented molecular Ag nanocrystal arrays. J. Phys. Chem. 1996, 100, 13904–13910.

25

Zhang, F.; Zhao, D. Y. Synthesis of uniform rare earth fluoride (NaMF4) nanotubes by in situ ion-exchange from their hydroxide [M(OH)3] parents. ACS Nano, 2009, 3, 159–164.

26

Zhou, Y. K.; Li, H. L. Sol–gel template synthesis and structural properties of a highly ordered LiNi0.5Mn0.5O2 nanowire array. J. Mater. Chem. 2002, 12, 681–686.

27

Son, S. J.; Reichel, J.; He, B.; Schuchman, M.; Lee, S. B. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery. J. Am. Chem. Soc. 2005, 127, 7316–7317.

28

Rabin, O.; Herz, P. R.; Lin, Y. M.; Akinwande, A. I.; Cronin, S. B.; Dresselhaus, M. S. Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Adv. Funct. Mater. 2003, 13, 631–638.

29

Steinhart, M.; Wehrspohn, R. B.; Gosele, U.; Wendorff, J. H. Nanotubes by template wetting: A modular assembly system. Angew. Chem. Int. Ed. 2004, 43, 1334–1340.

30

Lakshmi, B. B.; Dorhout, P. K.; Martin, C. R. Sol–gel template synthesis of semiconductor nanostructures. Chem. Mater. 1997, 9, 857–862.

31

Giersig, M.; Mulvaney, P. Preparation of ordered colloid monolayers by electrophoretic deposition. Langmuir 1993, 9, 3408–3413.

32

Motte, L.; Billoudet, F.; Lacaze, E.; Douin, J.; Pileni, M. P. Self-organization into 2D and 3D superlattices of nanosized particles differing by their size. J. Phys. Chem. B 1997, 101, 138–144.

33

Korgel, B. A.; Fitzmaurice, D. Condensation of ordered nanocrystal thin films. Phys. Rev. Lett. 1998, 80, 3531–3534.

34

Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. Formation of long-range-ordered nanocrystal superlattices on silicon nitride substrates. J. Phys. Chem. B 2001, 105, 3353–3357.

35

de Gennes, P. G. Wetting: Statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863.

36

Isrealachvili, J. N. Intermolecular and Surface Forces; Academic Press: New York, 1992.

37

Hamaker, H. C. The London–van der Waals attraction between spherical particles. Physica IV 1937, 1058–1072.

38

Stouwdam, J. W.; van Veggel, Frank C. J. M. Near-infrared emission of redispersible Er3+, Nd3+, and HO3+doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737.

39

Sivakumar, S.; Diamente, P. R.; van Veggel, Frank, C. J. M. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down- and upconverting biolabels. Chem. Eur. J. 2006, 12, 5878–5884.

40

Menyuk, N.; Dwight, K.; Pierce, J. W. NaYF4: Yb, Er–An efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21, 159–161.

41

Page, R. H.; Schaffers, K. I.; Waide, P. A.; Tassano, J. B.; Payne, S. A.; Krupke, W. F.; Bischel, W. K. Upconversion-pumped luminescence efficiency of rare-earth-doped hosts sensitized with trivalent ytterbium. J. Opt. Soc. Am. B 1998, 15, 996–1008.

42

Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride-based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

43

Bai, X.; Song, H. W.; Pan, G. H.; Lei, Y. Q.; Wang, T.; Ren, X.G.; Lu, S. Z.; Dong, B.; Dai, Q. L.; Fan, L. B. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: Saturation and thermal effects. J. Phys. Chem. C 2007, 111, 13611–13617.

44

Lee, J. W.; Jin, S. M.; Hwang, Y. S.; Park, J. G.; Park, H. M.; Hyeon, T. Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon 2005, 43, 2536–2543.

45

Woo, K. J.; Hong, J. W.; Choi, S. M.; Lee, H. W.; Ahn, J. P.; Kim, C. S.; Lee, S. W. Easy synthesis and magnetic properties of iron oxide nanoparticles. Chem. Mater. 2004, 16, 2814–2818.

46

Kang, E.; Park, J. N.; Hwang, Y. S.; Kang, M. S.; Park, J. G.; Hyeon, T. Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 2004, 108, 13932–13935.

47

Yi, D. K.; Selvan, S. T.; Lee, S. S.; Papaefthymiou, G. C.; Kundaliya, D.; Ying, J. Y. Silica-coated nanocomposites of magnetic nanoparticles and quantum dots. J. Am. Chem. Soc. 2005, 127, 4990–4991.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 December 2008
Revised: 29 January 2009
Accepted: 30 January 2009
Published: 01 April 2009
Issue date: April 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was supported by the National Science Foundation of China (20721063, 20890123, and 20521140450), the State Key Basic Research Program of the China (2006CB932302), Sci. & Tech. Commission of Shanghai Municipality (08DZ2270500) and Shanghai Leading Academic Discipline Project (B108).

Rights and permissions

This article is published with open access at Springerlink.com

Return