Journal Home > Volume 2 , Issue 4

Magnetotactic bacteria (MTB) were first discovered by Richard P. Blakemore in 1975, and this led to the discovery of a wide collection of microorganisms with similar features i.e., the ability to internalize Fe and convert it into magnetic nanoparticles, in the form of either magnetite (Fe3O4) or greigite (Fe3S4). Studies showed that these particles are highly crystalline, monodisperse, bioengineerable and have high magnetism that is comparable to those made by advanced synthetic methods, making them candidate materials for a broad range of bio-applications. In this review article, the history of the discovery of MTB and subsequent efforts to elucidate the mechanisms behind the magnetosome formation are briefly covered. The focus is on how to utilize the knowledge gained from fundamental studies to fabricate functional MTB nanoparticles (MTB-NPs) that are capable of tackling real biomedical problems.


menu
Abstract
Full text
Outline
About this article

Production, Modification and Bio-Applications of Magnetic Nanoparticles Gestated by Magnetotactic Bacteria

Show Author's information Jin XieKai ChenXiaoyuan Chen( )
Department of RadiologyBio-X ProgramStanford University School of MedicineStanford, CA 94305-5484USA

Abstract

Magnetotactic bacteria (MTB) were first discovered by Richard P. Blakemore in 1975, and this led to the discovery of a wide collection of microorganisms with similar features i.e., the ability to internalize Fe and convert it into magnetic nanoparticles, in the form of either magnetite (Fe3O4) or greigite (Fe3S4). Studies showed that these particles are highly crystalline, monodisperse, bioengineerable and have high magnetism that is comparable to those made by advanced synthetic methods, making them candidate materials for a broad range of bio-applications. In this review article, the history of the discovery of MTB and subsequent efforts to elucidate the mechanisms behind the magnetosome formation are briefly covered. The focus is on how to utilize the knowledge gained from fundamental studies to fabricate functional MTB nanoparticles (MTB-NPs) that are capable of tackling real biomedical problems.

Keywords: magnetic resonance imaging (MRI), Magnetotactic bacteria (MTB), magnetosome, bio-application

References(80)

1

Blakemore, R. P. Magnetotactic bacteria. Annu. Rev. Microbiol. 1982, 36, 217–238.

2

Arakaki, A.; Nakazawa, H.; Nemoto, M.; Mori, T.; Matsunaga, T. Formation of magnetite by bacteria and its application. J. R. Soc. Interface 2008, 5, 977–999.

3

Bazylinski, D. A. Synthesis of the bacterial magnetosome: The making of a magnetic personality. Int. Microbiol. 1999, 2, 71–80.

4

Bazylinski, D. A.; Frankel, R. B. Magnetosome formation in prokaryotes. Nat. Rev. Microbiol. 2004, 2, 217–230.

5

Bazylinski, D. A. Structure and function of the bacterial magnetosome. Asm. News 1995, 61, 337–343.

6

Komeili, A. Molecular mechanisms of magnetosome formation. Annu. Rev. Biochem. 2007, 76, 351–366.

7

Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Wentworth, S. J.; Vali, H.; Gibson, E. K., Jr.; Romanek, C. S. Magnetofossils from ancient Mars: A robust biosignature in the martian meteorite ALH84001. Appl. Environ. Microbiol. 2002, 68, 3663–3672.

8

Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Wentworth, S. J.; Vali, H.; Gibson, E. K., Jr.; McKay, M. F.; Romanek, C. S. Truncated hexa-octahedral magnetite crystals in ALH84001: Presumptive biosignatures. Proc. Natl. Acad. Sci. USA 2001, 98, 2164–2169.

9

Thomas-Keprta, K. L.; Bazylinski, D. A.; Kirschvink, J. L.; Clemett, S. J.; McKay, D. S.; Wentworth, S. J.; Vali, H.; Gibson, E. K., Jr.; Romanek, C. S. Elongated prismatic magnetite crystals in ALH84001 carbonate globules: Potential Martian magnetofossils. Geochim. Cosmochim. Acta 2000, 64, 4049–4081.

10

Weiss, B. P.; Kim, S. S.; Kirschvink, J. L.; Kopp, R. E.; Sankaran, M.; Kobayashi, A.; Komeili, A. Magnetic tests for magnetosome chains in Martian meteorite ALH84001. Proc. Natl. Acad. Sci. USA 2004, 101, 8281–8284.

11

Prozorov, R.; Prozorov, T.; Mallapragada, S. K.; Narasimhan, B.; Williams, T. J.; Bazylinski, D. A. Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Phys. Rev. B 2007, 76, 054406

12

Bazylinski, D. A.; Moskowitz, B. M. Microbial biomineralization of magnetic iron minerals: Microbiology, magnetism and environmental significance. Geomicrobiol. Interact. Microbe. Mineral 1997, 35, 181–223.

13

Frankel, R. B.; Blakemore, R. P.; Dearaujo, F. F. T.; Esquivel, D. M. S.; Danon, J. Magnetotactic bacteria at the geomagnetic equator. Science 1981, 212, 1269–1270.

14

Blakemore, R. P.; Frankel, R. B.; Kalmijn, A. J. South-seeking magnetotactic bacteria in the southern-hemisphere. Nature 1980, 286, 384–385.

15

Simmons, S. L.; Bazylinski, D. A.; Edwards, K. J. South-seeking magnetotactic bacteria in the northern hemisphere. Science 2006, 311, 371–374.

16

Frankel, R. B.; Bazylinski, D. A.; Johnson, M. S.; Taylor, B. L. Magneto-aerotaxis in marine coccoid bacteria. Biophys. J. 1997, 73, 994–1000.

17

Smith, M. J.; Sheehan, P. E.; Perry, L. L.; O'Connor, K.; Csonka, L. N.; Applegate, B. M.; Whitman, L. J. Quantifying the magnetic advantage in magnetotaxis. Biophys. J. 2006, 91, 1098–1107.

18

Gorby, Y. A.; Beveridge, T. J.; Blakemore, R. P. Characterization of the bacterial magnetosome membrane. J. Bacteriol. 1988, 170, 834–841.

19

Tanaka, M.; Okamura, Y.; Arakaki, A.; Tanaka, T.; Takeyama, H.; Matsunaga, T. Origin of magnetosome membrane: Proteomic analysis of magnetosome membrane and comparison with cytoplasmic membrane. Proteomics 2006, 6, 5234–5247.

20

Matsunaga, T.; Okamura, Y.; Fukuda, Y.; Wahyudi, A. T.; Murase, Y.; Takeyama, H. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res. 2005, 12, 157–166.

21

Komeili, A.; Li, Z.; Newman, D. K.; Jensen, G. J. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 2006, 311, 242–245.

22

Scheffel, A.; Gruska, M.; Faivre, D.; Linaroudis, A.; Plitzko, J. M.; Schuler, D. An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria. Nature 2006, 440, 110–114.

23

McIntosh, R.; Nicastro, D.; Mastronarde, D. New views of cells in 3D: An introduction to electron tomography. Trends Cell Biol. 2005, 15, 43–51.

24

Komeili, A.; Vali, H.; Beveridge, T. J.; Newman, D. K. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc. Natl. Acad. Sci. USA 2004, 101, 3839–3844.

25

Schuler, D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol. Rev. 2008, 32, 654–672.

26

Richter, M.; Kube, M.; Bazylinski, D. A.; Lombardot, T.; Glockner, F. O.; Reinhardt, R.; Schuler, D. Comparative genome analysis of four magnetotactic bacteria reveals a complex set of group-specific genes implicated in magnetosome biomineralization and function. J. Bacteriol. 2007, 189, 4899–4910.

27

Schubbe, S.; Kube, M.; Scheffel, A.; Wawer, C.; Heyen, U.; Meyerdierks, A.; Madkour, M. H.; Mayer, F.; Reinhardt, R.; Schuler, D. Characterization of a spontaneous nonmagnetic mutant of Magnetospirillum gryphiswaldense reveals a large deletion comprising a putative magnetosome island. J. Bacteriol. 2003, 185, 5779–5790.

28

Bazylinski, D. A.; Schubbe, S. Controlled biominerali-zation by and applications of magnetotactic bacteria. Adv. Appl. Microbiol. 2007, 62, 21–62.

29

Ullrich, S.; Kube, M.; Schubbe, S.; Reinhardt, R.; Schuler, D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol. 2005, 187, 7176–7184.

30

Grunberg, K.; Wawer, C.; Tebo, B. M.; Schuler, D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl. Environ. Microbiol. 2001, 67, 4573–4582.

31

Scheffel, A.; Schuler, D. The acidic repetitive domain of the Magnetospirillum gryphiswaldense MamJ protein displays hypervariability but is not required for magnetosome chain assembly. J. Bacteriol. 2007, 189, 6437–6446.

32

Pradel, N.; Santini, C. L.; Bernadac, A.; Fukumori, Y.; Wu, L. F. Biogenesis of actin-like bacterial cytoskeletal filaments destined for positioning prokaryotic magnetic organelles. Proc. Natl. Acad. Sci. USA 2006, 103, 17485–17489.

33

Scheffel, A.; Gardes, A.; Grunberg, K.; Wanner, G.; Schuler, D. The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J. Bacteriol. 2008, 190, 377–386.

34

Thornhill, R. H.; Burgess, J. G.; Sakaguchi, T.; Matsunaga, T. A morphological classification of bacteria containing bullet-shaped magnetic particles. Fems. Microbiol. Lett. 1994, 115, 169–176.

35

Bazylinski, D. A.; Garrattreed, A. J.; Frankel, R. B. Electron-microscopic studies of magnetosomes in magnetotactic bacteria. Micros. Res. Techniq. 1994, 27, 389–401.

36

Han, L.; Li, S.; Yang, Y.; Zhao, F.; Huang, J.; Chang, J. Comparison of magnetite nanocrystal formed by biomineralization and chemosynthesis. J. Magn. Magn. Mater. 2007, 313, 236–242.

37

Lins, U.; McCartney, M. R.; Farina, M.; Frankel, R. B.; Buseck, P. R. Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. An. Acad. Bras. Cienc. 2006, 78, 463–474.

38

Lins, U.; McCartney, M. R.; Farina, M.; Frankel, R. B.; Buseck, P. R. Habits of magnetosome crystals in coccoid magnetotactic bacteria. Appl. Environ. Microbiol. 2005, 71, 4902–4905.

39

Muxworthy, A. R.; Williams, W. Critical single-domain/multidomain grain sizes in noninteracting and interacting elongated magnetite particles: Implications for magnetosomes. J. Geophys. Res. 2006, 111, B12S12.

40

Heyen, U.; Schuler, D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl. Microbiol. Biotechnol. 2003, 61, 536–544.

41

Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 2007, 13, 95–99.

42

Dunin-Borkowski, R. E.; McCartney, M. R.; Frankel, R. B.; Bazylinski, D. A.; Posfai, M.; Buseck, P. R. Magnetic microstructure of magnetotactic bacteria by electron holography. Science 1998, 282, 1868–1870.

43

Staniland, S.; Ward, B.; Harrison, A.; van der Laan, G.; Telling, N. Rapid magnetosome formation shown by real-time X-ray magnetic circular dichroism. Proc. Natl. Acad. Sci. USA 2007, 104, 19524–19528.

44

Arakaki, A.; Webb, J.; Matsunaga, T. A novel protein tightly bound to bacterial magnetic particles in Magnetospirillum magneticum strain AMB-1. J. Biol. Chem. 2003, 278, 8745–8750.

45

Moisescu, C.; Bonneville, S.; Tobler, D.; Ardelean, I.; Benning, L. G. Controlled biomineralization of magnetite (Fe3O4) by Magnetospirillum gryphiswaldense. Mineral. Mag. 2008, 72, 333–336.

46

Staniland, S.; Williams, W.; Telling, N.; Van Der Laan, G.; Harrison, A.; Ward, B. Controlled cobalt doping of magnetosomes in vivo. Nat. Nanotechnol. 2008, 3, 158–162.

47

Suzuki, T.; Okamura, Y.; Calugay, R. J.; Takeyama, H.; Matsunaga, T. Global gene expression analysis of iron-inducible genes in Magnetospirillum magneticum AMB-1. J. Bacteriol. 2006, 188, 2275–2279.

48

Xia, M.; Wei, J.; Lei, Y.; Ying, L. A novel ferric reductase purified from Magnetospirillum gryphiswaldense MSR-1. Curr. Microbiol. 2007, 55, 71–75.

49

Noguchi, Y.; Fujiwara, T.; Yoshimatsu, K.; Fukumori, Y. Iron reductase for magnetite synthesis in the magnetotactic bacterium Magnetospirillum magnetotacticum. J. Bacteriol. 1999, 181, 2142–2147.

50

Paoletti, L. C.; Blakemore, R. P. Iron reduction by aquaspirillum-magnetotacticum. Curr. Microbiol. 1988, 17, 339–342.

51

Andrews, S. C.; Robinson, A. K.; Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237.

52

Schuler, D. Formation of magnetosomes in magnetotactic bacteria. J. Mol. Microbiol. Biotechnol. 1999, 1, 79–86.

53

Faivre, D.; Bottger, L. H.; Matzanke, B. F.; Schuler, D. Intracellular magnetite biomineralization in bacteria proceeds by a distinct pathway involving membrane-bound ferritin and an iron(Ⅱ) species. Angew. Chem. Int. Ed. Engl. 2007, 46, 8495–8499.

54

Nies, D. H.; Silver, S. Ion Efflux systems involved in bacterial metal resistances. J. Indust. Microbiol. 1995, 14, 186–199.

55

Paulsen, I. T.; Saier, M. H. A novel family of ubiquitous heavy metal ion transport proteins. J. Membrane Biol. 1997, 156, 99–103.

56

Faivre, D.; Menguy, N.; Posfai, M.; Schuler, D. Environmental parameters affect the physical properties of fast-growing magnetosomes. Amer. Mineral. 2008, 93, 463–469.

57

Bazylinski, D. A.; Frankel, R. B.; Heywood, B. R.; Mann, S.; King, J. W.; Donaghay, P. L.; Hanson, A. K. Controlled biomineralization of magnetite (Fe3O4) and greigite (Fe3S4) in a magnetotactic bacterium. Appl. Environ. Microbiol. 1995, 61, 3232–3239.

58

Kobayashi, A.; Kirschvink, J. L.; Nash, C. Z.; Kopp, R. E.; Sauer, D. A.; Bertani, L. E.; Voorhout, W. F.; Taguchi, T. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications. Earth Planet. Sci. Lett. 2006, 245, 538–550.

59

Schuler, D.; Frankel, R. B. Bacterial magnetosomes: Microbiology, biomineralization and biotechnological applications. Appl. Microbiol. Biotechnol. 1999, 52, 464–473.

60

Sun, J. B.; Zhao, F.; Tang, T.; Jiang, W.; Tian, J. S.; Li, Y.; Li, J. L. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl. Microbiol. Biotechnol. 2008, 79, 389–397.

61

Ceyhan, B.; Alhorn, P.; Lang, C.; Schuler, D.; Niemeyer, C. M. Semisynthetic biogenic magnetosome nanoparticles for the detection of proteins and nucleic acids. Small 2006, 2, 1251–1255.

62

Tanaka, T.; Takeda, H.; Kokuryu, Y.; Matsunaga, T. Spontaneous integration of transmembrane peptides into a bacterial magnetic particle membrane and its application to display of useful proteins. Anal. Chem. 2004, 76, 3764–3769.

63

Nakamura, C.; Kikuchi, T.; Burgess, J. G.; Matsunaga, T. Iron-regulated expression and membrane localization of the maga protein in Magnetospirillum sp strain Amb-1. J. Biochem. 1995, 118, 23–27.

64

Matsunaga, T.; Sato, R.; Kamiya, S.; Tanaka, T.; Takeyama, H. Chemiluminescence enzyme immunoassay using protein A-bacterial magnetite complex. J. Magn. Magn. Mater. 1999, 194, 126–131.

65

Matsunaga, T.; Togo, H.; Kikuchi, T.; Tanaka, T. Production of luciferase-magnetic particle complex by recombinant Magnetospirillum sp AMB-1. Biotechnol. Bioeng. 2000, 70, 704–709.

DOI
66

Maeda, Y.; Yoshino, T.; Takahashi, M.; Ginya, H.; Asahina, J.; Tajima, H.; Matsunaga, T. Noncovalent immobilization of streptavidin on in vitro- and in vivo-biotinylated bacterial magnetic particles. Appl. Environ. Microbiol. 2008, 74, 5139–5145.

67

Yoshino, T.; Matsunaga, T. Efficient and stable display of functional proteins on bacterial magnetic particles using Mms13 as a novel anchor molecule. Appl. Environ. Microbiol. 2006, 72, 465–471.

68

Yoshino, T.; Hirabe, H.; Takahashi, M.; Kuhara, M.; Takeyama, H.; Matsunaga, T. Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane. Biotechnol. Bioeng. 2008, 101, 470–477.

69

Matsunaga, T.; Kamiya, S. Use of magnetic particles isolated from magnetotactic bacteria for enzyme immobilization. Appl. Microbiol. Biotechnol. 1987, 26, 328–332.

70

Bahaj, A. S.; Croudace, I. W.; James, P. A. B.; Moeschler, F. D.; Warwick, P. E. Continuous radionuclide recovery from wastewater using magnetotactic bacteria. J. Magn. Magn. Mater. 1998, 184, 241–244.

71

Yoza, B.; Arakaki, A.; Matsunaga, T. DNA extraction using bacterial magnetic particles modified with hyperbranched polyamidoamine dendrimer. J. Biotechnol. y 2003, 101, 219–228.

72

Wacker, R.; Ceyhan, B.; Alhorn, P.; Schueler, D.; Lang, C.; Niemeyer, C. M. Magneto immuno-PCR: A novel immunoassay based on biogenic magnetosome nanoparticles. Biochem. Biophys. Res. Commun. 2007, 357, 391–396.

73

Nakamura, N.; Burgess, J. G.; Yagiuda, K.; Kudo, S.; Sakaguchi, T.; Matsunaga, T. Detection and removal of Escherichia coli using fluorescein isothiocyanate conjugated monoclonal-antibody immobilized on bacterial magnetic particles. Anal. Chem. 1993, 65, 2036–2039.

74

Amemiya, Y.; Tanaka, T.; Yoza, B.; Matsunaga, T. Novel detection system for biomolecules using nano-sized bacterial magnetic particles and magnetic force microscopy. J. Biotechnol. 2005, 120, 308–314.

75

Hartung, A.; Lisy, M. R.; Herrmann, K. H.; Hilger, I.; Schuler, D.; Lang, C.; Bellemann, M. E.; Kaiser, W. A.; Reichenbach, J. R. Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging. J. Magn. Magn. Mater. 2007, 311, 454–459.

76

Zurkiya, O.; Chan, A. W.; Hu, X. MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn. Reson. Med. 2008, 59, 1225–1231.

77

Sun, J. B.; Duan, J. H.; Dai, S. L.; Ren, J.; Zhang, Y. D.; Tian, J. S.; Li, Y. In vitro and in vivo antitumor effects of doxorubicin loaded with bacterial magnetosomes (DBMs) on H22 cells: The magnetic bio-nanoparticles as drug carriers. Cancer Lett. 2007, 258, 109–117.

78

Xiang, L.; Bin, W.; Huali, J.; Wei, J.; Jiesheng, T.; Feng, G.; Ying, L. Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J. Gene Med. 2007, 9, 679–690.

79

Hergt, R.; Hiergeist, R.; Zeisberger, M.; Schuler, D.; Heyen, U.; Hilger, I.; Kaiser, W. A. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J. Magn. Magn. Mates. 2005, 293, 80–86.

80

Hergt, R.; Dutz, S. Magnetic particle hyperthermia-biophysical limitations of a visionary tumour therapy. J. Magn. Magn. Mater. 2007, 311, 187–192.

Publication history
Copyright
Rights and permissions

Publication history

Received: 06 December 2008
Revised: 20 January 2009
Accepted: 21 January 2009
Published: 01 April 2009
Issue date: April 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Rights and permissions

This article is published with open access at Springerlink.com

Return