Journal Home > Volume 2 , Issue 3

Molecular Landers are a class of compounds containing an aromatic board as well as bulky side groups which upon adsorption of the molecule on a surface may lift the molecular board away from the substrate. Different molecular Landers have extensively been studied as model systems for nanomachines and the formation of molecular wires, as well as for their function as "molecular moulds", i.e., acting as templates by accommodating metal atoms underneath their aromatic board. Here, we investigate the adsorption of a novel Lander molecule 1, 4-bis(4-(2, 4-diaminotriazine)phenyl)-2, 3, 5, 6-tetrakis(4-tert-butylphenyl)benzene (DAT, C64H68N10) on Cu(110) and Au(111) surfaces under ultrahigh vacuum (UHV) conditions. By means of scanning tunneling microscopy (STM) imaging and manipulaAEtion, we characterize the morphology and binding geometries of DAT molecules at terraces and step edges. On the Cu(110) surface, various contact configurations of individual DAT Landers were formed at the step edges in a controlled manner, steered by STM manipulation, including lateral translation, rotation, and pushing molecules to an upper terrace. The diffusion barrier of single DAT molecules on Au(111) is considerably smaller than on Cu(110). The DAT Lander is specially designed with diamino-triazine side groups making it suitable for future studies of molecular self-assembly by hydrogen-bonding interactions. The results presented here are an important guide to the choice of substrate for future studies using this compound.


menu
Abstract
Full text
Outline
About this article

STM Manipulation of Molecular Moulds on Metal Surfaces

Show Author's information Miao Yu1,Wei Xu1,Youness Benjalal2,3Regis Barattin2Erik Laegsgaard1Ivan Stensgaard1Mohamed Hliwa2,3Xavier Bouju2André Gourdon2Christian Joachim2Trolle R. Linderoth1( )Flemming Besenbacher1
Interdisciplinary Nanoscience Center (iNANO) and Department of Physics and AstronomyAarhus UniversityNy Munkegade8000Aarhus C, Denmark
Nanoscience groupCEMES-CNRS, 29 rue Jeanne Marvig31055Toulouse, France
Faculté des Sciences Ben M'sikUniversité Hassan II-MohammédiaBP 7955, Sidi Othman, CasablancaMorocco

† These authors contributed equally to this work.

Abstract

Molecular Landers are a class of compounds containing an aromatic board as well as bulky side groups which upon adsorption of the molecule on a surface may lift the molecular board away from the substrate. Different molecular Landers have extensively been studied as model systems for nanomachines and the formation of molecular wires, as well as for their function as "molecular moulds", i.e., acting as templates by accommodating metal atoms underneath their aromatic board. Here, we investigate the adsorption of a novel Lander molecule 1, 4-bis(4-(2, 4-diaminotriazine)phenyl)-2, 3, 5, 6-tetrakis(4-tert-butylphenyl)benzene (DAT, C64H68N10) on Cu(110) and Au(111) surfaces under ultrahigh vacuum (UHV) conditions. By means of scanning tunneling microscopy (STM) imaging and manipulaAEtion, we characterize the morphology and binding geometries of DAT molecules at terraces and step edges. On the Cu(110) surface, various contact configurations of individual DAT Landers were formed at the step edges in a controlled manner, steered by STM manipulation, including lateral translation, rotation, and pushing molecules to an upper terrace. The diffusion barrier of single DAT molecules on Au(111) is considerably smaller than on Cu(110). The DAT Lander is specially designed with diamino-triazine side groups making it suitable for future studies of molecular self-assembly by hydrogen-bonding interactions. The results presented here are an important guide to the choice of substrate for future studies using this compound.

Keywords: adsorption, Scanning tunneling microscopy (STM), molecular Landers, STM manipulation, molecular moulding

References(29)

1

Joachim, C.; Gimzewski, J. K.; Aviram A. Electronics using hybrid-molecular and mono-molecular devices. Nature 2000, 408, 541–548.

2

Browne, W. R.; Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 2006, 1, 25–35.

3

Gourdon, A. Synthesis of "Molecular Landers". Eur. J. Org. Chem. 1998, 1998, 2797–2801.

DOI
4

Magoga, M.; Joachim, C. Conductance and transparence of long molecular wires. Phys. Rev. B 1997, 56, 4722–4729.

5

Gross, L.; Rieder, K. -H.; Moresco, F.; Stojkovic, S. M.; Gourdon, A.; Joachim, C. Trapping and moving metal atoms with a six-leg molecule. Nat. Mater. 2005, 4, 892–895.

6

Schunack, M.; Rosei, F.; Naitoh, Y.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Adsorption behavior of Lander molecules on Cu(110) studied by scanning tunneling microscopy. J. Chem. Phys. 2002, 117, 6259–6265.

7

Savio, L.; Gross, L.; Rieder, K. -H.; Gourdon, A.; Joachim, C.; Moresco, F. Interaction of a long molecular wire with a nanostructured surface: Violet Landers on Cu(211). Chem. Phys. Lett. 2006, 428, 331–337.

8

Grill, L.; Rieder, K. -H.; Moresco, F.; Rapenne, G.; Stojokovic, S.; Bouju, X.; Joachim, C. Rolling a single molecular wheel at the atomic scale. Nat. Nanotechnol. 2007, 2, 95–98.

9

Shirai, Y.; Osgood, A. J.; Zhao, Y. M.; Yao, Y. X.; Saudan, L.; Yang, H. B.; Chiu, Y. -H.; Alemany, L. B.; Sasaki, T.; Morin, J. -F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. Surface-rolling molecules. J. Am. Chem. Soc. 2006, 128, 4854–4864.

10

Sasaki, T.; Guerrero, J. M.; Leonard, A. D.; Tour, J. M. Nanotrains and self-assembled two-dimensional arrays built from carboranes linked by hydrogen bonding of dipyridones. Nano Res. 2008, 1, 412–419.

11

Rosei, F.; Schunack, M.; Jiang, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Organic molecules acting as templates on metal surfaces. Science 2002, 296, 328–331.

12

Otero, R.; Rosei, F.; Besenbacher, F. Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces. Annu. Rev. Phys. Chem. 2006, 57, 497–525.

13

Grill, L.; Moresco, F. Contacting single molecules to metallic electrodes by scanning tunneling microscope manipulation: Model systems for molecular electronics. J. Phys. : Condens. Matter 2006, 18, S1887–1908.

14

Grill, L.; Moresco, F.; Jiang, P.; Joachim, C.; Gourdon, A.; Rieder, K. -H. Controlled manipulation of a single molecular wire along a copper atomic nanostructure. Phys. Rev. B 2004, 69, 035416.

15

Moresco, F.; Meyer, G.; Rieder, K. -H.; Tang, H.; Gourdon, A.; Joachim, C. Conformational changes of single molecules induced by scanning tunneling microscopy manipulation: A route to molecular switching. Phys. Rev. Lett. 2001, 86, 672–675.

16

Otero, R.; Naitoh, Y.; Rosei, F.; Jiang, P.; Thostrup, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. One-dimensional assembly and selective orientation of Lander molecules on a O–Cu template. Angew. Chem. Int. Ed. 2004, 43, 2092–2095.

17

Grill, L.; Rieder, K. -H.; Moresco, F.; Stojkovic, S.; Gourdon, A.; Joachim, C. Controlling the electronic interaction between a molecular wire and its atomic scale contacting pad. Nano Lett. 2005, 5, 859–863.

18

Alemani, M.; Gross, L.; Moresco, F.; Rieder, K. -H.; Wang, C.; Bouju, X.; Gourdon, A.; Joachim, C. Recording the intramolecular deformation of a 4-legs molecule during its STM manipulation on a Cu(211) surface. Chem. Phys. Lett. 2005, 402, 180–185.

19

Otero, R.; Rosei, F.; Naitoh, Y.; Jiang, P.; Thostrup, P.; Gourdon, A.; Lægsgaard, E.; Stensgaard, I.; Joachim, C.; Besenbacher, F. Nanostructuring Cu surfaces using custom-designed molecular molds. Nano Lett. 2004, 4, 75–78.

20

Otero, R.; Hümmelink, F.; Sato, F.; Legoas, S. B.; Thostrup, P.; Lægsgaard, E.; Stensgaard, I.; Galvão, D. S.; Besenbacher, F. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nat. Mater. 2004, 3, 779–782.

21

Kuntze, J.; Ge, X.; Berndt, R. Chiral structures of Lander molecules on Cu(100). Nanotechnology 2004, 15, S337–340.

22

Xu, W.; Dong, M.; Gersen, H.; Rauls, E.; Vazquez-Campos, S.; Crego-Calama, M.; Reinhoudt, D. N.; Stensgaard, I.; Lægsgaard, E.; Stensgaard, I.; Linderoth, T. R.; Besenbacher, F. Cyanuric acid and melamine on Au(111): Structure and energetics of hydrogen-bonded networks. Small 2007, 3, 854–858.

23

Theobald, J. A.; Oxtoby, N. S.; Phillips, M. A.; Champness, N. R.; Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 2003, 424, 1029–1031.

24

De Feyter, S.; Miura, A.; Yao, S.; Chen, Z.; Wurthner, F.; Jonkheijm, P.; Schenning, A. P. H. J.; Meijer, E. W.; De Schryver, F. C. Two-dimensional self-assembly into multicomponent hydrogen-bonded nanostructures. Nano Lett. 2005, 5, 77–81.

25

Ruiz-Oses, M.; Gonzalez-Lakunza, N.; Silanes, I.; Gourdon, A.; Arnau, A.; Ortega, J. E. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy. J. Phys. Chem. B 2006, 110, 25573–25577.

26

Lægsgaard, E.; Osterlund, L.; Thostrup, P.; Rasmussen, P. B.; Stensgaard, I.; Besenbacher, F. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 2001, 72, 3537–3542.

27

Sautet, P.; Joachim, C. Calculation of the benzene on rhodium STM images. Chem. Phys. Lett. 1991, 185, 23–30.

28

Allinger, N. L.; Chen, K.; Lii, J. -H. An improved force field (MM4) for saturated hydrocarbons. J. Comput. Chem. 1996, 17, 642–668.

DOI
29

Zambelli, T.; Goudeau, S.; Lagoute, J.; Gourdon, A.; Bouju, X.; Gauthier, S.; Molecular self-assembly of jointed molecules on a metallic substrate: From single molecule to monolayer. Chem. Phys. Chem. 2006, 7, 1917–1920.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 November 2008
Revised: 13 January 2009
Accepted: 13 January 2009
Published: 08 March 2009
Issue date: March 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

We acknowledge financial support from the IST Pico-Inside and NMP Frontiers European projects as well as grants from the Danish Ministry of Science, Technology and Innovation and from the Danish Research Councils. M. H and Y. B. J thank the CMIFM via the Volubilis France-Morocco exchange program.

Rights and permissions

Return