Journal Home > Volume 2 , Issue 3

Fluorescent three-dimensional (3-D) superlattices of dansyl glutathione protected gold nanoparticles, with potential applications in molecular detection, have been synthesized at an air/water interface by controlling the pH of the nanoparticle suspension. The number of fluorophores per nanoparticle was calculated to be ~127. Morphologies of the superlattice crystals were examined using scanning electron microscopy (SEM). Most of the crystals observed were triangular in shape. High-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) were used to study the packing of nanoparticles in these crystals. Both these studies showed that the nanoparticles were arranged in a face-centered cubic (fcc) pattern with a particle-particle distance (center-center) of ~10.5 nm. Evolution of the crystal morphologies with time was also examined. The fluorescence properties of these triangles were studied using confocal fluorescence imaging and confocal Raman mapping, which were in good agreement with the morphologies observed by SEM. The superlattice exhibits near-infrared (NIR) absorption in the range 1100–2500 nm. Easy synthesis of such functional nanoparticle-based solids makes it possible to use them in novel applications. We utilized the fluorescence of dansyl glutathione gold superlattice crystals for the selective detection of bovine serum albumin (BSA), the major protein constituent of blood plasma, based on the selective binding of the naphthalene ring of the dansyl moiety with site I of BSA.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fluorescent Superlattices of Gold Nanoparticles: A New Class of Functional Materials

Show Author's information Edakkattuparambil Sidharth Shibu1Madathumpady Abubaker Habeeb Muhammed1Keisaku Kimura2Thalappil Pradeep1( )
DST Unit on Nanoscience (DST UNS)Department of Chemistry and Sophisticated Analytical Instrument FacilityIndian Institute of Technology, Madras, Chennai600 036India
Graduate School of Material ScienceUniversity of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun Hyogo678-1297Japan

Abstract

Fluorescent three-dimensional (3-D) superlattices of dansyl glutathione protected gold nanoparticles, with potential applications in molecular detection, have been synthesized at an air/water interface by controlling the pH of the nanoparticle suspension. The number of fluorophores per nanoparticle was calculated to be ~127. Morphologies of the superlattice crystals were examined using scanning electron microscopy (SEM). Most of the crystals observed were triangular in shape. High-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) were used to study the packing of nanoparticles in these crystals. Both these studies showed that the nanoparticles were arranged in a face-centered cubic (fcc) pattern with a particle-particle distance (center-center) of ~10.5 nm. Evolution of the crystal morphologies with time was also examined. The fluorescence properties of these triangles were studied using confocal fluorescence imaging and confocal Raman mapping, which were in good agreement with the morphologies observed by SEM. The superlattice exhibits near-infrared (NIR) absorption in the range 1100–2500 nm. Easy synthesis of such functional nanoparticle-based solids makes it possible to use them in novel applications. We utilized the fluorescence of dansyl glutathione gold superlattice crystals for the selective detection of bovine serum albumin (BSA), the major protein constituent of blood plasma, based on the selective binding of the naphthalene ring of the dansyl moiety with site I of BSA.

Keywords: Periodic self-assembly, dansyl glutathione, fluorescent superlattice, confocal fluorescence imaging, selective binding

References(61)

1

Collier, C. P.; Vossmeyer, T.; Heath, J. R. Nanocrystal superlattices. Annu. Rev. Phys. Chem. 1998, 49, 371–404.

2

Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 2004, 429, 642–646.

3

Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Airstable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310, 462–465.

4

Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Reguicha, A. A. G. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2003, 2, 229–232.

5

Hoinville, J.; Bewick, A.; Gleeson, D.; Jones, R.; Kasyutich, O.; Mayes, E.; Nartowski, A.; Warne, B.; Wiggins, J.; Wong, K. High density magnetic recording on protein-derived nanoparticles. J. Appl. Phys. 2003, 93, 7187–7189.

6

Grunes, J.; Zhu, J.; Anderson, E. A.; Somorjai, G. A. Ethylene hydrogenation over platinum nanoparticle array model catalysts fabricated by electron beam lithography: Determination of active metal surface area. J. Phys. Chem. B 2002, 106, 11463–11468.

7

Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006–16014.

8

Motesharei, K.; Myles, D. C. Molecular recognition on functionalized self-assembled monolayers of alkanethiols on gold. J. Am. Chem. Soc. 1998, 120, 7328–7336.

9

Spinke, J.; Liley, M.; Guder, H. -J.; Angermaier, L.; Knoll, W. Molecular recognition at self-assembled monolayers: The construction of multicomponent multilayers. Langmuir 1993, 9, 1821–1825.

10

Alivisatos, A. P.; Johnson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. Organization of "nanocrystal molecules" using DNA. Nature 1996, 382, 609–611.

11

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

12

Korgel, B. A.; Fitzmaurice, D. Self-assembly of silver nanocrystals into two-dimensional nanowire arrays. Adv. Mater. 1998, 10, 661–665.

DOI
13

Wang, Z. L. Structural analysis of self-assembling nanocrystal superlattices. Adv. Mater. 1998, 10, 13–30.

DOI
14

Harfenist, S. A.; Wang, Z. L.; Alvarez, M. M.; Vezmar, I.; Whetten, R. L. Highly oriented molecular Ag nanocrystal arrays. J. Phys. Chem. 1996, 100, 13904–13910.

15

Sigman, M. B., Jr.; Saunders, A. E.; Korgel, B. A. Metal nanocrystal superlattice nucleation and growth. Langmuir 2004, 20, 978–983.

16

Wang, Z. L.; Harfenist, S. A.; Vezmar, I.; Whetten, R. L.; Bentley, J.; Evans, N. D.; Alexander, K. B. Superlattices of self-assembled tetrahedral Ag nanocrystals. Adv. Mater. 1998, 10, 808–812.

DOI
17

Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamondlike lattice. Science 2006, 312, 420–424.

18

Harfenist, S. A.; Wang, Z. L.; Whetten, R. L.; Vezmar, I.; Alvarez, M. M. Three-dimensional hexagonal close-packed superlattice of passivated Ag nanocrystals. Adv. Mater. 1997, 9, 817–822.

19

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

20

Ohara, P. C.; Heath, J. R.; Gelbart, W. M. Self-assembly of submicrometer rings of particles from solutions of nanoparticles. Angew. Chem. Int. Ed. Engl. 1997, 36, 1078–1080.

21

Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

22

Taleb, A.; Petit, C.; Pileni, M. P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: A way to 2-D and 3-D self-organization. Chem. Mater. 1997, 9, 950–959.

23

Daniel, M. -C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

24

Rogach, A. L.; Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Organization of matter on different size scales: Monodisperse nanocrystals and their superstructures. Adv. Funct. Mater. 2002, 12, 653–664.

DOI
25

Redl, F. X.; Cho, K. S.; Murray, C. B.; O'Brien, S. Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots. Nature 2003, 423, 968–971.

26

Stoeva, S. I.; Prasad, B. L. V.; Uma, S.; Stoimenov, P. K.; Zaikovski, V.; Sorensen, C. M.; Klabunde, K. J. Face-centered cubic and hexagonal closed-packed nanocrystal superlattices of gold nanoparticles prepared by different methods. J. Phys. Chem. B 2003, 107, 7441–7448.

27

Dabbousi, B. O.; Murray, C. B.; Rubner, M. F.; Bawendi, M. G. Langmuir-Blodgett manipulation of size-selected CdSe nanocrystallites. Chem. Mater. 1994, 6, 216–219.

28

Pileni, M. P. Nanocrystal self-assemblies: Fabrication and collective properties. J. Phys. Chem. B 2001, 105, 3358–3371.

29

Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I. Gram-scale synthesis of monodisperse gold colloids by the solvated metal atom dispersion method and digestive ripening and their organization into two- and three-dimensional structures. J. Am. Chem. Soc. 2002, 124, 2305–2311.

30

Binder, W. H. Supramolecular assembly of nanoparticles at liquid-liquid interfaces. Angew. Chem. Int. Ed. 2005, 44, 5172–5175.

31

Sanyal, M. K.; Agrawal, V. V.; Bera, M. K.; Kalyanikutty, K. P.; Daillant, J.; Blot, C.; Kubowicz, S.; Konovalov, O.; Rao. C. N. R. Formation and ordering of gold nanoparticles at the toluene-water interface. J. Phys. Chem. C. 2008, 112, 1739–1743, and the reference, 6a and 6b cited therein.

32

Sarathy, K. V.; Kulkarni, G. U.; Rao, C. N. R. A novel method of preparing thiol-derivatised nanoparticles of gold, platinum and silver forming superstructures. Chem. Commun. 1997, 537-538.

33

Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Nanoparticle assembly and transport at liquid-liquid interfaces. Science 2003, 299, 226–229.

34

Talapin, D. V.; Shevchenko, E. V.; Kornowski, A.; Gaponik, N.; Haase, M.; Rogach, A. L.; Weller, H. A new approach to crystallization of CdSe nanoparticles into ordered three-dimensional superlattices. Adv. Mater. 2001, 13, 1868–1871.

DOI
35

Boal, A. K.; Ilhan, F.; DeRouchey, J. E.; Thurn-Albrecht, T.; Russel, T. P.; Rotello, V. M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404, 746 748.

36

Demer, L. M.; Ginger, D. S.; Park, S. -J.; Li, Z.; Chung, S. -W.; Mirkin, C. A. Direct pattering of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science 2002, 296, 1836–1838.

37

Sanyal, A.; Norsten, T. B.; Uzun, O.; Rotello, V. M. Adsorption/desorption of mono- and di-block copolymers on surfaces using specific hydrogen bonding interactions. Langmuir 2004, 20, 5958–5964.

38

Kimura, K.; Sato, S.; Yao, H. Particle crystals of surface modified gold nanoparticles growth from water. Chem. Lett. 2001, 30, 372 373.

39

Wang, S. H.; Sato, S.; Kimura, K. Preparation of hexagonal-close-packed colloidal crystals of hydrophilic monodisperse gold nanoparticles in bulk aqueous solution. Chem. Mater. 2003, 15, 2445–2448.

40

Wang, S. H.; Yao, H.; Sato, S.; Kimura, K. Inclusion-water-cluster in a three-dimensional superlattice of gold nanoparticles. J. Am. Chem. Soc. 2004, 126, 7438–7439.

41

Yang, Y.; Liu, S.; Kimura, K. Superlattice formation from polydisperse Ag nanoparticles by a vapor-diffusion method. Angew. Chem. Int. Ed. 2006, 45, 5662–5665.

42

Yao, H.; Minami, T.; Hori, A.; Koma, M.; Kimura, K. Fivefold symmetry in superlattices of monolayer-protected gold nanoparticles. J. Phys. Chem B. 2006, 110, 14040–14045.

43

Nishida, N.; Shibu, E. S.; Yao, H.; Oonishi, T.; Kimura, K.; Pradeep, T. Fluorescent gold nanoparticle superlattices. Adv. Mater. 2008, 20, 4719–4723.

44

Kiely, C. J.; Fink, J.; Brust, M.; Bethell, D.; Schiffrin, D. J. Spontaneous ordering of bimodal ensembles of nanoscopic gold clusters. Nature 1998, 396, 444–446.

45

Rogach, A. L. Binary superlattices of nanoparticles: Self-assembly leads to "metamaterials". Angew. Chem. Int. Ed. 2004, 43, 148–149.

46

Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Synergistic effects in binary nanocrystal superlattices: Enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 2007, 6, 115–121.

47

Chen, Z. Y.; Moore, J.; Radtke, G.; Sirringhaus, H.; O'Brien, S. Binary nanoparticle superlattices in the semiconductor-semiconductor system: CdTe and CdSe. J. Am. Chem. Soc. 2007, 129, 15702–15709.

48

Chen, Z.; O'Brien, S. Structure direction of Ⅱ–Ⅵ semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2008, 2, 1219–1229.

49

Terrill, R. H.; Postlethwaite, T. A. P.; Chen, C. H.; Poon, C. D; Terzis, A.; Chen, A.; Hutchison, J. E.; Clark, M. R.; Wignall, G. Monolayers in three dimensions: NMR, SAXS, thermal, and electron hopping studies of alkanethiol stabilized gold clusters. J. Am. Chem. Soc. 1995, 117, 12537–12548.

50

Shibu, E. S.; Habeeb Muhammed, M. A.; Tsukuda, T.; Pradeep, T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: Spectroscopy, kinetics and luminescence. J. Phys. Chem C. 2008 112, 12168–12176.

51

Habeeb Muhammed, M. A.; Shaw, A. K.; Pal, S. K.; Pradeep, T. Quantum clusters of gold exhibiting FRET. J. Phys. Chem C. 2008, 112, 14324–14330.

52

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

53

Wang, Z. L.; Harfenist, A. S.; Whetten, R. L.; Bentley, J.; Evans, N. D. Bundling interdigitation of adsorbed thiolate groups in self-assembled nanocrystal superlattices. J. Phys. Chem. B 1998, 102, 3068–3072.

54

Maxwell, D. J.; Taylor, J. R.; Nie, S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J. Am. Chem. Soc. 2002, 124, 9606–9612.

55

Pandey, R. K.; Constantine, S.; Tsuchida, T.; Zheng, G.; Medforth, C. J.; Aoudia, M.; kozyrev, A. N.; Rodgers, M. A. J.; Kato, H.; Smith, K. M.; Dougherty, T. J. Synthesis, photophysical properties, in vivo photosensitizing efficacy, and human serum albumin binding properties of some novel bacteriochlorins. J. Med. Chem. 1997, 40, 2770–2779.

56

Chang, C. C.; Wu, H. L.; Kuo, C. H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20, 7570–7574.

57

Levy, E. J.; Anderson, M. E.; Meister, A. On the synthesis and characterization of N-formyl glutathione and N-acetyl glutathione. Anal. Biochem. 1993, 214, 135-137.

58

Gan, J. P.; Harper, T. W.; Hsueh, M. -M.; Qu, Q. L.; Humphreys, W. G. Dansyl glutathione as a trapping agent for the quantitative estimation and identification of reactive metabolites. Chem. Res. Toxicol. 2005, 18, 896–903.

59
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N. Gaussian 03, Revision C. 02, Gaussian, Inc., Wallingford CT, 2004.
60

Biswas, K.; Varghese, N.; Rao, C. N. R. Growth kinetics of gold nanocrystals: A combined small-angle X-ray scattering and calorimetric study. Small 2008, 4, 649–655.

61

Pedersen, J. S. A flux- and background- optimized version of the nanoSTAR small-angle X-ray scattering camera for solution scattering. J. Appl. Crystallogr. 2004, 37, 369–380.

File
nr-2-3-220_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 November 2008
Revised: 26 December 2008
Accepted: 29 December 2008
Published: 08 March 2009
Issue date: March 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors thank the Department of Science and Technology (DST), Government of India for constantly supporting our research program on nanomaterials. We gratefully thank Prof. C. N. R. Rao and Mr. Kanishka Biswas, JNCASR, Bangalore, India, for the SAXS measurements. Thanks are due to Prof. G. U. Kulkarni, Ms. T. Bhuvana and Ms. N. R. Selvi, JNCASR Bangalore, India, for the FESEM measurements. Thanks are due to Dr. C. Subramaniam for help in AFM measurements. We thank Mr. Mohammed Akbar Ali, Dept. of Chemistry, IIT Madras for the calculations using Gaussian-03. E. S. S. thanks the University Grants Commission (UGC) for a senior research fellowship.

Rights and permissions

Return