Journal Home > Volume 2 , Issue 3

Facile dry decoration of graphene oxide sheets with aerosol Ag nanocrystals synthesized from an arc plasma source has been demonstrated using an electrostatic force directed assembly technique at room temperature. The Ag nanocrystal-graphene oxide hybrid structure was characterized by transmission electron microscopy (TEM) and selected area diffraction. The ripening of Ag nanocrystals on a graphene oxide sheet was studied by consecutive TEM imaging of the same region on a sample after heating in Ar at elevated temperatures of 100 ℃, 200 ℃, and 300 ℃. The average size of Ag nanocrystals increased and the number density decreased after the annealing process. In particular, migration and coalescence of Ag nanocrystals were observed at a temperature as low as 100 ℃, suggesting a van der Waals interaction between the Ag nanocrystal and the graphene oxide sheet. The availability of affordable graphene-nanocrystal structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications.


menu
Abstract
Full text
Outline
About this article

Facile, Noncovalent Decoration of Graphene Oxide Sheets with Nanocrystals

Show Author's information Ganhua Lu1Shun Mao1Sungjin Park2Rodney S. Ruoff2Junhong Chen1( )
Department of Mechanical EngineeringUniversity of Wisconsin-Milwaukee3200 N. Cramer St.MilwaukeeWI53211USA
Department of Mechanical Engineering and the Texas Materials InstituteUniversity of Texas at Austin204 E. Dean KeetonAustinTX78712USA

Abstract

Facile dry decoration of graphene oxide sheets with aerosol Ag nanocrystals synthesized from an arc plasma source has been demonstrated using an electrostatic force directed assembly technique at room temperature. The Ag nanocrystal-graphene oxide hybrid structure was characterized by transmission electron microscopy (TEM) and selected area diffraction. The ripening of Ag nanocrystals on a graphene oxide sheet was studied by consecutive TEM imaging of the same region on a sample after heating in Ar at elevated temperatures of 100 ℃, 200 ℃, and 300 ℃. The average size of Ag nanocrystals increased and the number density decreased after the annealing process. In particular, migration and coalescence of Ag nanocrystals were observed at a temperature as low as 100 ℃, suggesting a van der Waals interaction between the Ag nanocrystal and the graphene oxide sheet. The availability of affordable graphene-nanocrystal structures and their fundamental properties will open up new opportunities for nanoscience and nanotechnology and accelerate their applications.

Keywords: Graphene oxide, hybrid nanostructures, silver nanocrystals, nanocrystal ripening

References(52)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

2

Ni, Z. H.; Wang, H. M.; Kasim, J.; Fan, H. M.; Yu, T.; Wu, Y. H.; Feng, Y. P.; Shen, Z. X. Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 2007, 7, 2758–2763.

3

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

4

Frank, I. W.; Tanenbaum, D. M.; Van der Zande, A. M.; McEuen, P. L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B 2007, 25, 2558–2561.

5

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

6

Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308.

7

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319, 1229–1232.

8

Semenov, Y. G.; Kim, K. W.; Zavada, J. M. Spin field effect transistor with a graphene channel. Appl. Phys. Lett. 2007, 91, 153105.

9

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282–286.

10

Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331.

11

Wang, S. G.; Wang, J. J.; Miraldo, P.; Zhu, M. Y.; Outlaw, R.; Hou, K.; Zhao, X.; Holloway, B. C.; Manos, D.; Tyler, T.; Shenderova, O.; Ray, M.; Dalton, J.; McGuire, G. High field emission reproducibility and stability of carbon nanosheets and nanosheet-based backgated triode emission devices. Appl. Phys. Lett. 2006, 89, 183103.

12

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

13

Qazi, M.; Vogt, T.; Koley, G. Trace gas detection using nanostructured graphite layers. Appl. Phys. Lett. 2007, 91, 233101.

14

Qazi, M.; Vogt, T.; Koley, G. Two-dimensional signatures for molecular identification. Appl. Phys. Lett. 2008, 92, 103120.

15

Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene nanostructures as tunable storage media for molecular hydrogen. P. Natl. Acad. Sci. USA 2005, 102, 10439–10444.

16

Park, N.; Hong, S.; Kim, G.; Jhi, S. H. Computational study of hydrogen storage characteristics of covalentbonded graphenes. J. Am. Chem. Soc. 2007, 129, 8999–9003.

17

Boukhvalov, D. W.; Katsnelson, M. I.; Lichtenstein, A. I. Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations. Phys. Rev. B 2008, 77, 035427.

18

Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P.; Nguyen, S. T.; Ruoff, R. S. Graphene-silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.

19

Wang, X.; Zhi, L. J.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

20

Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W.; Geim, A. K.; Novoselov, K. S. Graphene-based liquid crystal device. Nano Lett. 2008, 8, 1704–1708.

21

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

22

Fissan, H.; Kennedy, M. K.; Krinke, T. J.; Kruis, F. E. Nanoparticles from the gas phase as building blocks for electrical devices. J. Nanopart. Res. 2003, 5, 299–310.

23

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Twodimensional atomic crystals. P. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

24

Novoselov, K. S.; Morozov, S. V.; Mohinddin, T. M. G.; Ponomarenko, L. A.; Elias, D. C.; Yang, R.; Barbolina, II; Blake, P.; Booth, T. J.; Jiang, D.; Giesbers, J.; Hill, E. W.; Geim, A. K. Electronic properties of graphene. Phys. Status Solidi B-Basic Solid State Phys. 2007, 244, 4106–4111.

25

Muszynski, R.; Seger, B.; Kamat, P. V. Decorating graphene sheets with gold nanoparticles. J. Phys. Chem. C 2008, 112, 5263–5266.

26

Williams, G.; Seger, B.; Kamat, P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

27

Chen, J. H.; Lu, G. H. Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 2006, 17, 2891–2894.

28

Lu, G. H.; Zhu, L. Y.; Wang, P. X.; Chen, J. H.; Dikin, D. A.; Ruoff, R. S.; Yu, Y.; Ren, Z. F. Electrostatic-force-directed assembly of Ag nanocrystals onto vertically aligned carbon nanotubes. J. Phys. Chem. C 2007, 111, 17919–17922.

29

Zhu, L. Y.; Lu, G. H.; Chen, J. H. A generic approach to coat carbon nanotubes with nanoparticles for potential energy applications. J. Heat Transf. -Trans. ASME 2008, 130, 044502.

30

Liu, M.; Lu, G. H.; Chen, J. H. Synthesis, assembly, and characterization of Si nanocrystals and Si nanocrystal carbon nanotube hybrid structures. Nanotechnology 2008, 19, 265705.

31

Cai, W. W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D. X.; Velamakanni, A.; An, S. J.; Stoller, M.; An, J. H.; Chen, D. M.; Ruoff, R. S. Synthesis and solid-state NMR structural characterization of C-13-labeled graphite oxide. Science 2008, 321, 1815–1817.

32

Lerf, A.; He, H. Y.; Forster, M.; Klinowski, J. Structure of graphite oxide revisited. J. Phys. Chem. B 1998, 102, 4477–4482.

33

He, H. Y.; Klinowski, J.; Forster, M.; Lerf, A. A new structural model for graphite oxide. Chem. Phys. Lett. 1998, 287, 53–56.

34

Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff, R. S. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 2006, 16, 155–158.

35

Park, S.; An, J.; Piner, R. D.; Jung, I.; Yang, D.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.

36

Chen, J. H.; Lu, G. H.; Zhu, L. Y.; Flagan, R. C. A simple and versatile mini-arc plasma source for nanocrystal synthesis. J. Nanopart. Res. 2007, 9, 203–213.

37

Mao, S.; Lu, G. H.; Chen, J. H. Coating carbon nanotubes with colloidal nanocrystals by combining an electrospray technique with directed assembly using an electrostatic field. Nanotechnology 2008, 19, 455610.

38

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

39

Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. Carbon nanotubes: Synthesis, structure, properties, and applications; Springer: Berlin, New York, 2001.

40

Morgenstern, K.; Rosenfeld, G.; Comsa, G. Local correlation during Ostwald ripening of two-dimensional islands on Ag(111). Surf. Sci. 1999, 441, 289–300.

41

Meyer, R.; Ge, Q. F.; Lockemeyer, J.; Yeates, R.; Lemanski, M.; Reinalda, D.; Neurock, M. An ab initio analysis of adsorption and diffusion of silver atoms on alumina surfaces. Surf. Sci. 2007, 601, 134–145.

42

Byon, E.; Oates, T. W. H.; Anders, A. Coalescence of nanometer silver islands on oxides grown by filtered cathodic arc deposition. Appl. Phys. Lett. 2003, 82, 1634–1636.

43

Zhu, L. Y.; Lu, G. H.; Mao, S.; Chen, J. H.; Dikin, D. A.; Chen, X. Q.; Ruoff, R. S. Ripening of silver nanoparticles on carbon nanotubes. Nano 2007, 2, 149–156.

44

Gangopadhyay, P.; Magudapathy, P.; Kesavamoorthy, R.; Panigrahi, B. K.; Nair, K. G. M.; Satyam, P. V. Growth of silver nanoclusters embedded in soda glass matrix. Chem. Phys. Lett. 2004, 388, 416–421.

45

Heilmann, A.; Werner, J. In situ observation of microstructural changes of embedded silver particles. Thin Solid Films 1998, 317, 21–26.

46

Wynblatt, P.; Gjostein, N. A. Supported metal crystallites. Prog. Solid State Chem. 1975, 9, 21–58.

47

Wynblatt, P.; Gjostein, N. A. Particle growth in model supported metal catalysts-I Theory. Acta Metallurgica 1976, 24, 1165–1174.

48

Datye, A. K.; Xu, Q.; Kharas, K. C.; McCarty, J. M. Particle size distributions in heterogeneous catalysts: What do they tell us about the sintering mechanism? Catal. Today 2006, 111, 59–67.

49

Manard, M. J.; Kemper, P. R.; Bowers, M. T. Binding interactions of mono- and diatomic silver cations with small alkenes: Experiment and theory. Int. J. Mass Spectrom. 2005, 241, 109–117.

50

Yang, D.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice Jr., C. A.; Ruoff, R. S. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

51

Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. Nano Lett. 2008, 8, 4283–4287.

52

Becerril, H. A.; Mao, J.; Liu, Z.; Stoltenberg, R. M.; Bao, Z.; Chen, Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2008, 2, 463–470.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 November 2008
Revised: 23 December 2008
Accepted: 23 December 2008
Published: 08 March 2009
Issue date: March 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was financially supported by the National Science Foundation through grant CMMI-0609059. TEM analyses were performed in the HRTEM Laboratory at University of Wisconsin-Milwaukee. The authors thank D. A. Dikin for providing samples of graphene oxide, M. Gajdardziska-Josifovska for providing TEM access, and D. Robertson for technical support with TEM analyses.

Rights and permissions

Return