Journal Home > Volume 2 , Issue 3

Separation of metallic from semiconducting single-walled carbon nanotubes has been a major challenge for some time and some previous efforts have resulted in partial success. We have accomplished the separation effectively by employing fluorous chemistry wherein the diazonium salt of 4-heptadecafluorooctylaniline selectively reacts with the metallic nanotubes present in the mixture of nanotubes. The resulting fluoroderivative was extracted in perfluorohexane leaving the semiconducting nanotubes in the aqueous layer. The products have been characterized by both Raman and electronic absorption spectroscopy. The method avoids the cumbersome centrifugation step required by some other procedures.


menu
Abstract
Full text
Outline
About this article

Separation of Metallic and Semiconducting Single-Walled Carbon Nanotubes Through Fluorous Chemistry

Show Author's information Sandeep Ghosh1,2C. N. R. Rao1,2( )
Chemistry and Physics of Materials UnitDST unit on Nanoscience and CSIR Centre of Excellence in ChemistryJawaharlal Nehru Centre for Advanced Scientific ResearchJakkur P.O.Bangalore560064India
Solid State and Structural Chemistry UnitIndian Institute of ScienceBangalore560012India

Abstract

Separation of metallic from semiconducting single-walled carbon nanotubes has been a major challenge for some time and some previous efforts have resulted in partial success. We have accomplished the separation effectively by employing fluorous chemistry wherein the diazonium salt of 4-heptadecafluorooctylaniline selectively reacts with the metallic nanotubes present in the mixture of nanotubes. The resulting fluoroderivative was extracted in perfluorohexane leaving the semiconducting nanotubes in the aqueous layer. The products have been characterized by both Raman and electronic absorption spectroscopy. The method avoids the cumbersome centrifugation step required by some other procedures.

Keywords: Carbon nanotubes, separation, metallic, semiconducting, fluorous

References(43)

1

Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, 1998.

DOI
2

Rao, C. N. R.; Govindaraj, A. Nanotubes and Nanowires; RSC Publishing: Cambridge, 2005.

DOI
3

Kukovecz, A.; Kramberger, C.; Georgakilas, V.; Prato, M.; Kuzmany, H. A. Detailed Raman study on thin single-wall carbon nanotubes prepared by the HiPCO process. Eur. Phys. J. B 2002, 28, 223–230.

4

Appenzeller, J.; Martel, R.; Derycke, V.; Radosavljevic, M.; Wind, S.; Neumayer, D.; Avouris, P. Carbon nanotubes as potential building blocks for future nanoelectronics. Microelectron. Eng. 2002, 64, 391–397.

5

Fan, S.; Chapline, M. G.; Franklin, N. R.; Tomber, T. W.; Cassell, A. M.; Dai, H. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 1999, 283, 512–514.

6

Kong, J.; Franklin, N. R.; Zhou, C.; Chapline, M. G.; Peng, S.; Cho, K.; Dai, H. Nanotube molecular wires as chemical sensors. Science 2000, 287, 622–625.

7

Baughman, R. H.; Cui, C.; Zakhidov, A. A.; Iqbal, Z.; Barisci, J. N.; Spinks, G. M.; Wallace, G. G.; Mazoldi, A.; De Rossi, D.; Rinzler, A. G.; Jaschinski, O.; Roth, S.; Kertesz, M. Carbon nanotube actuators. Science 1999, 284, 1340–344.

8

Ajayan, P. M. Aligned carbon nanotubes in a thin polymer film. Adv. Mater. 1995, 7, 489–491.

9

Kamras, K.; Itkis, M. E.; Zhao, H.; Hu, B.; Haddon, R. C. Covalent bond formation to a carbon nanotube metal. Science 2003, 301, 1501.

10

Strano, M. S.; Dyke, C. A.; Usrey, M. L.; Barone, P. W.; Allen, M. J.; Shan, H.; Kitrell, C.; Hauge, R. H.; Tour, J. M.; Smalley, R. E. Electronic structure control of single-walled carbon nanotube functionalization. Science 2003, 301, 1519–1522.

11

Wang, Q.; Johnson, J. K. Optimization of carbon nanotube arrays for hydrogen adsorption. J. Phys. Chem. B 1999, 103, 4809–4813.

12

Gülseren, O.; Ylidirim, T.; Ciraci, S. Effects of hydrogen adsorption on single-wall carbon nanotubes: Metallic hydrogen decoration. Phys. Rev. B 2002, 66, 121401.

13

An, K. H.; Heo, J. G.; Jeon, K. G.; Bae, D. J.; Chulsu, J.; Yang, C. W.; Park, C. Y.; Lee, Y. H. X-ray photoemission spectroscopy study of fluorinated single-walled carbon nanotubes. Appl. Phys. Lett. 2002, 80, 4235–4237.

14

Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.

15

Chattopadhyay, D.; Galeska, L.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.

16

Li, H. P.; Zhou, B.; Lin, Y.; Gu, L.; Wang, W.; Fernando, K. A. S.; Kumar, S.; Allard, L. F.; Sun, Y. Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 2004, 126, 1014–1015.

17

Chen, Z.; Du, X.; Du, M.; Rancken, C.; Cheng, H.; Rinzler, A. Bulk separative enrichment in metallic or semiconducting single-walled carbon nanotubes. Nano Lett. 2003, 3, 1245–1249.

18

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

19

Toyoda, S.; Yamaguchi, Y.; Hiwatashi, M.; Tomonari, Y.; Murakami, H.; Nakashima, N. Separation of semiconducting single-walled carbon nanotubes by using a long-alkyl-chain benzenediazonium compound. Chem. Asian J. 2007, 2, 145–149.

20

Zhang, W. Fluorous synthesis of heterocyclic systems. Chem. Rev. 2004, 104, 2531–2556.

21

Yoshida, J.; Itami, K. Tag strategy for separation and recovery. Chem. Rev. 2002, 102, 3693–3716.

22

Campidelli, S.; Menegheti, M.; Prato, M. Separation of metallic and semiconducting single-walled carbon nanotubes via covalent functionalization. Small 2007, 3, 1672–1676.

23

Bahr, J. L.; Tour, J. M. Covalent chemistry of single-wall carbon nanotubes. J. Mater. Chem. 2002, 12, 1952–1958.

24

Dyke, C. A.; Tour, J. M. Solvent-free functionalization of carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 1156–1157.

25

Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536–6542.

26

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

27

Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191.

28

Brown, S. D. M.; Corio, P.; Marucci, A.; Pimenta, M. A.; Dresselhaus, M. S.; Dresselhaus, G. Second-order resonant Raman spectra of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, 7734–7742.

29

Brown, S. D. M.; Corio, P.; Marucci, A.; Dresselhaus, M. S.; Pimenta, M. A.; Kneipp, K. Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys. Rev. B 2000, 61, R5137–R5140.

30

Das, A.; Sood, A. K.; Govindaraj, A.; Marco Saitta, A.; Lazzeri, M.; Mauri, F.; Rao, C. N. R. Doping in carbon nanotubes probed by Raman and transport measurements. Phys. Rev. Lett. 2007, 99, 136803.

31

Scolari, M.; Mews, A.; Fu, N.; Myalitsin, A.; Assmus, T.; Balasubramanian, K.; Burghard, M.; Kern, K. Surface enhanced Raman scattering of carbon nanotubes decorated by individual fluorescent gold particles. J. Phys. Chem. C 2008, 112, 391–396.

32

Vivekchand, S. R. C.; Govindaraj, A.; Sheikh M. M.; Rao C. N. R. New method of purification of carbon nanotubes based on hydrogen treatment. J. Phys. Chem. B 2004, 108, 6935–6937.

33

O'Connell, M. J.; Bachilo, S. M.; Huffman, C. B.; Moore, V. C.; Strano, M. S.; Haroz, E. H.; Rialon, K. L.; Boul, P. J.; Noon, W. H.; Kittrell, C.; Ma, J.; Hauge, R. H.; Weisman, R. B.; Smalley, R. E. Band gap fluorescence from individual single-walled carbon nanotubes. Science 2002, 297, 593–596.

34

Yoshino, N.; Kitamura, M.; Seto, T.; Shibata, Y.; Abe, M.; Ogino, K. Synthesis of azobenzene derivatives having fluoroalkyl chain and their monomolecular film formation at the air/water interface. Bull. Chem. Soc. Jpn. 1992, 65, 2141–2144.

35

Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A. Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects. Phys. Rev. Lett. 2004, 93, 147406.

36

Anderson, N.; Hartschuh, A.; Cronin, S.; Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 2533–2537.

37

Maeda, Y.; Takano, Y.; Sagara, A.; Hashimoto, M.; Kanda, M.; Kimura, S.; Lian, Y.; Nakahodo, T.; Tsuchiya, T.; Wakahara, T.; Akasaka, T.; Hasegawa, T.; Kazaoui, S.; Minami, N.; Lu, J.; Nagase, S. Simple purification and selective enrichment of metallic SWCNTs produced using the arc-discharge method. Carbon 2008, 46, 1563–1569.

38

Zhu, H. -W.; Jiang, B.; Xu, C. -L; Wu, D. -H. Synthesis of high quality single-walled carbon nanotube silks by the arc discharge technique. J. Phys. Chem. B 2003, 107, 6514–6518.

39

Tarasov, B. P.; Muradyan, V. E.; Shul'ga, Y. M.; Krinichnaya, E. P.; Kuyunko, N. S.; Efimov, O. N.; Obraztsova, E. D.; Schur, D. V.; Maehlen, J. P.; Yartys, V. A.; Lai, H. -J. Synthesis of carbon nanostructures by arc evaporation of graphite rods with Co–Ni and YNi2 catalysts. Carbon 2003, 41, 1357–1364.

40

Brown, S. D. M.; Jorio, A.; Corio, P.; Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Kneipp, K. Origin of the Breit–Wigner–Fano lineshape of the tangential G-band feature of metallic carbon nanotubes. Phys. Rev. B 2001, 63, 155414.

41

Blackburn, J. L.; Engtrakul, C.; McDonald, T. J.; Dillon, A. C.; Heben, M. J. Effects of surfactant and boron doping on the BWF feature in the Raman spectrum of single-wall carbon nanotube aqueous dispersions. J. Phys. Chem. B 2006, 110, 25551–25558.

42

Shin, H. -J.; Kim, S. M.; Yoon, S. -M.; Benayad, A.; Kim, K. K.; Kim, S. J.; Park, H. K.; Choi, J. -Y.; Lee, Y. H. Tailoring electronic structures of carbon nanotubes by solvent with electron-donating and -withdrawing groups. J. Am. Chem. Soc. 2008, 130, 2062–2066.

43

Voggu, R.; Rout, C. S.; Franklin, A. D.; Fisher, J. S.; Rao, C. N. R. Extraordinary sensitivity of the electronic structure and properties of single-walled carbon nanotubes to molecular charge-transfer. J. Phys. Chem. C 2008, 112, 13053–13056.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 04 November 2008
Revised: 18 December 2008
Accepted: 18 December 2008
Published: 08 March 2009
Issue date: March 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors thank Ved Varun Agrawal for assistance with STM measurements.

Rights and permissions

Return