Journal Home > Volume 2 , Issue 1

Nanocrystals are emerging as key materials due to their novel shape- and size-dependent chemical and physical properties that differ drastically from their bulk counterparts. The main challenges in this field remain rationally controlled synthesis and large scale production. This article reviews recent progress in our laboratory related to solution-based synthesis of various nanostructures, including zero-dimensional (0-D) nanocrystals, 1-D nanowires and nanorods, hollow structures, and superlattice materials. On the other hand, the essential goal for nanoresearchers is to achieve industrial applications of nanostructured materials. In the past decades, these fascinating materials have been widely used in many promising fields such as nanofabrication, nanodevices, nanobiology, and nanocatalysis. Herein, we focus on their applications as nanocatalysts and try to illustrate the main problems and future directions in this area based on our recent endeavors in catalytic applications of nanocrystals.


menu
Abstract
Full text
Outline
About this article

Nanocrystals: Solution-Based Synthesis and Applications as Nanocatalysts

Show Author's information Dingsheng WangTing XieYadong Li( )
Department of Chemistry Tsinghua UniversityBeijing 100084 China

Abstract

Nanocrystals are emerging as key materials due to their novel shape- and size-dependent chemical and physical properties that differ drastically from their bulk counterparts. The main challenges in this field remain rationally controlled synthesis and large scale production. This article reviews recent progress in our laboratory related to solution-based synthesis of various nanostructures, including zero-dimensional (0-D) nanocrystals, 1-D nanowires and nanorods, hollow structures, and superlattice materials. On the other hand, the essential goal for nanoresearchers is to achieve industrial applications of nanostructured materials. In the past decades, these fascinating materials have been widely used in many promising fields such as nanofabrication, nanodevices, nanobiology, and nanocatalysis. Herein, we focus on their applications as nanocatalysts and try to illustrate the main problems and future directions in this area based on our recent endeavors in catalytic applications of nanocrystals.

Keywords: Nanocrystals, solution-based synthesis, nanocatalysts, nucleation and growth mechanism

References(91)

1

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

2

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

3

Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353–389.

4

El-Sayed, M. A. Small is different: Shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc. Chem. Res. 2004, 37, 326–333.

5

Huang, Y.; Duan, X. F.; Lieber, C. M. Nanowires for integrated multicolor nanophotonics. Small 2005, 1, 142–147.

6

Lai, E.; Kim, W.; Yang, P. D. Vertical nanowire array-based light emitting diodes. Nano Res. 2008, 1, 123–128.

7

Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592.

8

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

9

Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

10

Liu, Z. Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

11

Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.

12

Huang, W.; Kuhn, J. N.; Tsung, C. K.; Zhang, Y.; Habas, S. E.; Yang, P.; Somorjai, G. A. Dendrimer templated synthesis of one nanometer Rh and Pt particles supported on mesoporous silica: Catalytic activity for ethylene and pyrrole hydrogenation. Nano Lett. 2008, 8, 2027–2034.

13

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

14

Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969–976.

15

Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G.; Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

16

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science, 2007, 316, 732–735.

17

Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers. Langmuir 2005, 21, 2519–2525.

18

Bhuvana, T.; Kulkarni, G. U. Highly conducting patterned Pd nanowires by direct-write electron beam lithography. ACS Nano 2008, 2, 457–462.

19

Ge, J. P.; Li, Y. D. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater. 2004, 14, 157–162.

20

Ge, J. P.; Wang, J.; Zhang, H. X.; Li, Y. D. A general atmospheric pressure chemical vapor deposition synthesis and crystallographic study of transition metal sulfide one-dimensional nanostructures. Chem. Eur. J. 2004, 10, 3525–3530.

21

Li, X. L.; Ge, J. P.; Li, Y. D. Atmospheric pressure chemical vapor deposition: An alternative route to large-scale MoS2 and WS2 inorganic fullerene-like nanostructures and nanoflowers. Chem. Eur. J. 2004, 10, 6163–6171.

22

Ge, J. P.; Wang, J.; Zhang, H. X.; Wang, X.; Peng, Q.; Li, Y. D. Halide-transport chemical vapor deposition of luminescent ZnS : Mn2+ one-dimensional nanostructures. Adv. Funct. Mater. 2005, 15, 303–308.

23

Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.

24

Yin, Y. D.; Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 2005, 437, 664–670.

25

Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J. G.; Gou, J. L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

26

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = S, Se, Te) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

27

Donegá, C. M.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152–1162.

28

Jun, Y.; Choi, J.; Cheon, J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes. Angew. Chem. Int. Ed. 2006, 45, 3414–3439.

29

Rao, C. N. R.; Vivekchand, S. R. C.; Biswas, K.; Govindaraj, A. Synthesis of inorganic nanomaterials. Dalton Trans. 2007, 3728–3749.

30

Pinna, N.; Niederberger, M. Surfactant-free nonaqueous synthesis of metal oxide nanostructures. Angew. Chem. Int. Ed. 2008, 47, 5292–5304.

31

Yoshimura, M.; Byrappa, K. Hydrothermal processing of materials: Past, present and future. J. Mater. Sci. 2008, 43, 2085–2103.

32

Sun, S.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 2004, 126, 273–279.

33

Wang, D. S.; Liang, X.; Li, Y. D. Preparation of nearly monodisperse nanoscale inorganic pigments. Chem. Asian J. 2006, 1, 91–94.

34

Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.

35

Lee, E. P.; Xia, Y. N. Growth and patterning of Pt nanowires on silicon substrates. Nano Res. 2008, 1, 129–137.

36

Hsu, Y. F.; Xi, Y. Y.; Tam, K. H.; Djurisic, A. B.; Luo, J. M.; Ling, C. C.; Cheung, C. K.; Ng, A. M. C.; Chan, W. K.; Deng, X.; Beling, C. D.; Fung, S.; Cheah, K. W.; Fong, P. W. K.; Surya, C. C. Undoped p-type ZnO nanorods synthesized by a hydrothermal method. Adv. Funct. Mater. 2008, 18, 1020–1030.

37

Hu, M. J.; Lin, B.; Yu, S. H. Magnetic field-induced solvothermal synthesis of one-dimensional assemblies of Ni–Co alloy microstructures. Nano Res. 2008, 1, 303–313.

38

Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

39

Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

40

Kuo, C. H.; Chen, C. H.; Huang, M. H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17, 3773–3780.

41

Tao, A. R.; Habas, S.; Yang, P. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

42

Viswanatha, R.; Battaglia, D. M.; Curtis, M. E.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Shape control of doped semiconductor nanocrystals (d-dots). Nano Res. 2008, 1, 138–144.

43

Xie, T.; Li, S.; Wang, W. B.; Peng, Q.; Li, Y. D. Nucleation and growth of BaFxCl2–x nanorods. Chem. Eur. J. 2008, 14, 9730–9735.

44

Zhang, H. W.; Delikanli, S.; Qin, Y. L.; He, S. L.; Swihart, M.; Zeng, H. Synthesis of monodisperse CdS nanorods catalyzed by Au nanoparticles. Nano Res. 2008, 1, 314–320.

45

Xie, T.; Li, S.; Peng, Q.; Li, Y. D. Monodisperse BaF2 nanocrystals: phase, size transition and self-assembly. Angew. Chem. Int. Ed. 2009, 48, 196–200.

46

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

47

Yin, M.; O'Brien, S. Synthesis of monodisperse nanocrystals of manganese oxides. J. Am. Chem. Soc. 2003, 125, 10180–10181.

48

Park, J.; Lee, E.; Hwang, N. M.; Kang, M.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hyeon, T. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 2872–2877.

49

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

50

Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. D. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

51

LaMer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

52

Huo, Z. Y.; Chen, C.; Liu, X. W.; Chu, D. R.; Li, H. H.; Peng, Q.; Li, Y. D. One-pot synthesis of monodisperse CeO2 nanocrystals and superlattices. Chem. Commun. 2008, 3741–3743.

53

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Ag, Ag2S, and Ag2Se nanocrystals: Synthesis, assembly, and construction of mesoporous structures. J. Am. Chem. Soc. 2008, 130, 4016–4022.

54

Wang, D. S.; Xie, T.; Peng, Q.; Li, Y. D. Direct thermal decomposition of metal nitrates in octadecylamine to metal oxide nanocrystals. Chem. Eur. J. 2008, 14, 2507–2513.

55

Wang, D. S.; Zheng, W.; Hao, C. H.; Peng, Q.; Li, Y. D. General synthesis of Ⅰ-Ⅲ-Ⅵ2 ternary semiconductor nanocrystals. Chem. Commun. 2008, 2556–2558.

56

Wang, D. S.; Hao, C. H.; Zheng, W.; Peng, Q.; Wang, T. H.; Liao, Z. M.; Yu, D. P.; Li, Y. D. Ultralong single-crystalline Ag2S nanowires: Promising candidates for photoswitches and room-temperature oxygen sensors. Adv. Mater. 2008, 20, 2628–2632.

57

Tan, Y. W.; Xue, X. Y.; Peng, Q.; Zhao, H.; Wang, T. H.; Li, Y. D. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios. Nano Lett. 2007, 7, 3723–3728.

58

Chen, W.; Peng, Q.; Li, Y. D. Alq3 nanorods: Promising building blocks for optical devices. Adv. Mater. 2008, 20, 2747–2750.

59

Chen, W.; Peng, Q.; Li, Y. D. Luminescent bis-(8-hydroxyquinoline) cadmium complex nanorods. Cryst. Growth Des. 2008, 8, 564–567.

60

Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D. Formation of CeO2–ZrO2 solid solution nanocages with controllable structures via Kirkendall effect. J. Am. Chem. Soc. 2008, 130, 2736–2737.

61

Liang, X.; Xu, B.; Kuang, S. M.; Wang, X. Multi-functionalized inorganic-organic rare earth hybrid microcapsules. Adv. Mater. 2008, 20, 3739–3744.

62

Zhuang, Z. B.; Peng, Q.; Wang, X.; Li, Y. D. Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 8174–8177.

63

Zhuang, Z. B.; Peng, Q.; Zhang, B.; Li, Y. D. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J. Am. Chem. Soc. 2008, 130, 10482–10483.

64

Haruta, M.; Yamada, N.; Kobayashi, T.; Lijima, S. Gold catalysts prepared by co-precipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

65

Valden, M.; Lai, X.; Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 1998, 281, 1647–1650.

66

Thomas, J. M.; Johnson, B. F. G.; Raja, R.; Sankar, G.; Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 2003, 36, 20–30.

67

Chang, J. S.; Hwang, J. S.; Park, S. E. Preparation and application of nanocatalysts via surface functionalization of mesoporous materials. Res. Chem. Intermediat. 2003, 29, 921–938.

68

Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

69

Chang, J. S.; Jhung, S. H.; Hwang, Y. K.; Park, S. E.; Hwang, J. S. Syntheses and applications of nanocatalysts based on nanoporous materials. Int. J. Nanotechnol. 2006, 3, 150–180.

70

Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J. Benzylation of aromatic compounds with different crystallites of MgO. J. Am. Chem. Soc. 2003, 125, 2020–2021.

71

Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal. 2005, 229, 206–212.

72

Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.

73

Peng, S.; Lee, Y.; Wang, C.; Yin, H.; Dai, S.; Sun, S. H. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 2008, 1, 229–234.

74

Zhou, K. B.; Xu, R.; Sun, X. M.; Chen, H. D.; Tian, Q.; Shen, D. X.; Li, Y. D. Favorable synergetic effects between CuO and the reactive planes of ceria nanorods. Catal. Lett. 2005, 101, 169–173.

75

Wang, D. S.; Xu, R.; Wang, X.; Li, Y. D. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17, 979–983.

76

Xu, R.; Wang, X.; Wang, D. S.; Zhou, K. B.; Li, Y. D. Surface structure effects in nanocrystal MnO2 and Ag/MnO2 catalytic oxidation of CO. J. Catal. 2006, 237, 426–430.

77

Wang, D. S.; Wang, X.; Xu, R.; Li, Y. D. Shape-dependent catalytic activity of CuO/MgO nanocatalysts. J. Nanosci. Nanotechnol. 2007, 7, 3602–3606.

78

Zhou, K. B.; Wang, R. P.; Xu, B. Q.; Li, Y. D. Synthesis, characterization and catalytic properties of CuO nanocrystals with various shapes. Nanotechnology 2006, 17, 3939–3943.

79

Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893.

80

Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097–3101.

81

Bond, G. C.; Thompson, D. T. Catalysis by gold. Catal. Rev. 1999, 41, 319–388.

82

Toebes, M. L.; van Dillen, J. A.; De Jong, Y. P. Synthesis of supported palladium catalysts. J. Mol. Catal. A-Chem. 2001, 173, 75–98.

83

Delannoy, L.; Weiher, N.; Tsapatsaris, N.; Beesley, A. M.; Nchari, L.; Schroeder, S. L. M.; Louis, C. Reducibility of supported gold (Ⅲ) precursors: Influence of the metal oxide support and consequences for CO oxidation activity. Top. Catal. 2007, 44, 263–273.

84

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

85

Tanev, P. T.; Chibwe, M. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds. Nature 1994, 368, 321–323.

86

Hu, Y. S.; Guo, Y. G.; Sigle, W.; Hore, S.; Balaya, P.; Maier, J. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nat. Mater. 2006, 5, 713–717.

87

Cejka, J.; Mintova, S. Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. 2007, 49, 457–509.

88

Zhang, S. B.; Wang, J. K.; Liu, H. T.; Wang, X. L. One-pot synthesis of Ni-nanoparticle-embedded mesoporous titania/silica catalyst and its application for CO2-reforming of methane. Catal. Commun. 2008, 9, 995–1000.

89

Xiong, H. F.; Zhang, Y. H.; Wang, S. G.; Liew, K. Y.; Li, J. L. Preparation and catalytic activity for Fischer–Tropsch synthesis of Ru nanoparticles confined in the channels of mesoporous SBA-15. J. Phys. Chem. C 2008, 112, 9706–9709.

90

Phillips, J. M. Up close: Nanoscale science research centers. MRS Bull. 2006, 31, 44–49.

91

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 6650–6653.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 28 October 2008
Revised: 27 November 2008
Accepted: 27 November 2008
Published: 01 January 2009
Issue date: January 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was supported by NSFC (90606006), the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (2006CB932300), and the Key Grant Project of the Ministry of Education of P. R. China (No. 306020).

Rights and permissions

Return