Journal Home > Volume 2 , Issue 1

Current methods of synthesizing single-walled carbon nanotubes (SWNTs) result in racemic mixtures that have impeded the study of left- and right-handed SWNTs. Here we present a method of isolating different SWNT enantiomers using density gradient ultracentrifugation. Enantiomer separation is enabled by the chiral surfactant sodium cholate, which discriminates between left- and right-handed SWNTs and thus induces subtle differences in their buoyant densities. This sorting strategy can be employed for simultaneous enrichment by handedness and roll-up vector of SWNTs having diameters ranging from 0.7 to 1.5 nm. In addition, circular dichroism of enantiomer refined samples enables identification of high-energy optical transitions in SWNTs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Isolation of Single-Walled Carbon Nanotube Enantiomers by Density Differentiation

Show Author's information Alexander A. GreenMatthew C. DuchMark C. Hersam( )
Department of Materials Science and Engineering and Department of Chemistry Northwestern UniversityEvanstonIllinois 60208-3108 USA

Abstract

Current methods of synthesizing single-walled carbon nanotubes (SWNTs) result in racemic mixtures that have impeded the study of left- and right-handed SWNTs. Here we present a method of isolating different SWNT enantiomers using density gradient ultracentrifugation. Enantiomer separation is enabled by the chiral surfactant sodium cholate, which discriminates between left- and right-handed SWNTs and thus induces subtle differences in their buoyant densities. This sorting strategy can be employed for simultaneous enrichment by handedness and roll-up vector of SWNTs having diameters ranging from 0.7 to 1.5 nm. In addition, circular dichroism of enantiomer refined samples enables identification of high-energy optical transitions in SWNTs.

Keywords: Carbon nanotube, chirality, separation, enantiomer, handedness, optical activity

References(37)

1

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

2

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

3

Hu, J. T.; Odom, T. W.; Lieber, C. M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 1999, 32, 435–445.

4

Hersam, M. C. Progress towards monodisperse single-walled carbon nanotubes. Nature Nanotech. 2008, 3, 387–394.

5

Krupke, R.; Hennrich, F.; von Lohneysen, H.; Kappes, M. M. Separation of metallic from semiconducting single-walled carbon nanotubes. Science 2003, 301, 344–347.

6

Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; McLean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science 2003, 302, 1545–1548.

7

Chattopadhyay, D.; Galeska, L.; Papadimitrakopoulos, F. A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. J. Am. Chem. Soc. 2003, 125, 3370–3375.

8

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nature Nanotech. 2006, 1, 60–65.

9

Nish, A.; Hwang, J. Y.; Doig, J.; Nicholas, R. J. Highly selective dispersion of singlewalled carbon nanotubes using aromatic polymers. Nature Nanotech. 2007, 2, 640–646.

10

Samsonidze, G. G.; Gruneis, A.; Saito, R.; Jorio, A.; Souza, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Interband optical transitions in left- and right-handed single-wall carbon nanotubes. Phys. Rev. B 2004, 69, 205402.

11

Tasaki, S.; Maekawa, K.; Yamabe, T. π-band contribution to the optical properties of carbon nanotubes: Effects of chirality. Phys. Rev. B 1998, 57, 9301–9318.

12

Vardanega, D.; Picaud, F.; Girardet, C. Chiral response of single walled carbon nanotube-based sensors to adsorption of amino acids: A theoretical model. J. Chem. Phys. 2007, 127, 194702.

13

Strano, M. S. Carbon nanotubes–Sorting out left from right. Nature Nanotech. 2007, 2, 340–341.

14

Ivchenko, E. L.; Spivak, B. Chirality effects in carbon nanotubes. Phys. Rev. B 2002, 66, 155404.

15

Peng, X.; Komatsu, N.; Bhattacharya, S.; Shimawaki, T.; Aonuma, S.; Kimura, T.; Osuka, A. Optically active single-walled carbon nanotubes. Nature Nanotech. 2007, 2, 361–365.

16

Peng, X. B.; Komatsu, N.; Kimura, T.; Osuka, A. Improved optical enrichment of SWNTs through extraction with chiral nanotweezers of 2, 6-pyridylene-bridged diporphyrins. J. Am. Chem. Soc. 2007, 129, 15947–15953.

17

Peng, X.; Komatsu, N.; Kimura, T.; Osuka, A. Simultaneous enrichments of optical purity and (n, m) abundance of SWNTs through extraction with 3, 6-carbazolylene-bridged chiral diporphyrin nanotweezers. ACS Nano 2008, 2, 2045–2050.

18

Green, A. A.; Hersam, M. C. Ultracentrifugation of single-walled nanotubes. Mater. Today 2007, 10, 59–60.

19

Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

20

Green, A. A.; Hersam, M. C. Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett. 2008, 8, 1417–1422.

21
Green, A. A.; Hersam, M. C. Processing and properties of highly enriched double-walled carbon nanotubes. Nature Nanotech., in press 2009. (DOI: 10.1038/nnano.2008.364).https://doi.org/10.1038/nnano.2008.364
DOI
22

Sun, X.; Zaric, S.; Daranciang, D.; Welsher, K.; Lu, Y.; Li, X.; Dai, H. Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J. Am. Chem. Soc. 2008, 130, 6551–6555.

23

Fagan, J. A.; Becker, M. L.; Chun, J.; Hobbie, E. K. Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 2008, 20, 1609–1614.

24

Mukhopadhyay, S.; Maitra, U. Chemistry and biology of bile acids. Curr. Sci. 2004, 87, 1666–1683.

25

Arnold, M. S.; Suntivich, J.; Stupp, S. I.; Hersam, M. C. Hydrodynamic characterization of surfactant encapsulated carbon nanotubes using an analytical ultracentrifuge. ACS Nano 2008, 2, 2291–2300.

26

Miyauchi, Y.; Oba, M.; Maruyama, S. Cross-polarized optical absorption of single-walled nanotubes by polarized photoluminescence excitation spectroscopy. Phys. Rev. B 2006, 74, 205440

27

Chuang, K. C.; Nish, A.; Hwang, J. Y.; Evans, G. W.; Nicholas, R. J. Experimental study of Coulomb corrections and single-particle energies for single-walled carbon nanotubes using cross-polarized photoluminescence. Phys. Rev. B 2008, 78, 085411.

28

Lefebvre, J.; Finnie, P. Polarized photoluminescence excitation spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 2007, 98, 167406.

29

Kilina, S.; Tretiak, S.; Doorn, S. K.; Luo, Z.; Papadimitrakopoulos, F.; Piryatinski, A.; Saxena, A.; Bishop, A. R. Cross-polarized excitons in carbon nanotubes. P. Natl. Acad. Sci. USA 2008, 105, 6797–6802.

30

Cross, L. C.; Klyne, W. Report from IUPAC commission on nomenclature of organic chemistry–Rules for nomenclature of organic chemistry. Section E: Stereochemistry (recommendations 1974). Pure Appl. Chem. 1976, 45, 13–30.

31

Dukovic, G.; Balaz, M.; Doak, P.; Berova, N. D.; Zheng, M.; McLean, R. S.; Brus, L. E. Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. J. Am. Chem. Soc. 2006, 128, 9004–9005.

32

Haroz, E. H.; Bachilo, S. M.; Weisman, R. B.; Doorn, S. K. Curvature effects on the E33 and E44 exciton transitions in semiconducting single-walled carbon nanotubes. Phys. Rev. B 2008, 77, 125405.

33

Jorio, A.; Santos, A. P.; Ribeiro, H. B.; Fantini, C.; Souza, M.; Vieira, J. P. M.; Furtado, C. A.; Jiang, J.; Saito, R.; Balzano, L.; Resasco, D. E.; Pimenta, M. A. Quantifying carbon-nanotube species with resonance Raman scattering. Phys. Rev. B 2005, 72, 075207.

34

Gruneis, A.; Saito, R.; Jiang, J.; Samsonidze, G. G.; Pimenta, M. A.; Jorio, A.; Souza, A. G.; Dresselhaus, G.; Dresselhaus, M. S. Resonant Raman spectra of carbon nanotube bundles observed by perpendicularly polarized light. Chem. Phys. Lett. 2004, 387, 301–306.

35

Uryu, S.; Ando, T. Exciton absorption of perpendicularly polarized light in carbon nanotubes. Phys. Rev. B 2006, 74, 155–411.

36

Zhao, H. B.; Mazumdar, S. Electron-electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 2004, 93, 157–402.

37

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

File
nr-2-1-69_ESM.pdf (289.8 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 October 2008
Revised: 26 November 2008
Accepted: 26 November 2008
Published: 01 January 2009
Issue date: January 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

The authors thank M. S. Arnold for helpful discussions and preliminary measurements. This work was supported by the U.S. Army Telemedicine and Advanced Technology Research Center (DAMD17-05-1-0381) and the National Science Foundation (DMR-0520513, EEC-0647560, and DMR-0706067). A Natural Sciences and Engineering Research Council of Canada Postgraduate Scholarship (A. A. Green) and an Alfred P. Sloan Research Fellowship (M. C. Hersam) are also acknowledged. This work made use of instruments in the Keck-Ⅱ facility of the NUANCE Center and the Keck Biophysics Facility at Northwestern University. The NUANCE Center is supported by NSF-NSEC, NSF-MRSEC, Keck Foundation, the State of Illinois, and Northwestern University.

Rights and permissions

Return