Journal Home > Volume 2 , Issue 1

A facile one-pot microwave irradiation reduction route has been developed for the synthesis of highly luminescent CdTe quantum dots using Na2TeO3 as the Te source in an aqueous environment. The synthesis parameters of this simple and rapid approach, including the reaction temperature and time, the pH of the reaction solution and the molar ratio of the 3-mercaptopropionic acid (MPA) stabilizer to Cd2+, have considerable influence on the particle size and photoluminescence quantum yield of the CdTe quantum dots. The photoluminescence quantum yield of CdTe quantum dots prepared using relatively short reaction times (10–40 min) reached 40%–60% (emission peaks at 550–640 nm). Furthermore, the resulting products could be used as fluorescent probes to detect Hg2+ ions in aqueous media. The response was linearly proportional to the concentration of Hg2+ ion in the range 8.0×10-9 mol/L to 2.0×10-6 mol/L with a detection limit of 2.7×10-9 mol/L.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-Pot Synthesis of Highly Luminescent CdTe Quantum Dots by Microwave Irradiation Reduction and Their Hg2+-Sensitive Properties

Show Author's information Junling DuanLianxiang SongJinhua Zhan( )
Department of ChemistryShandong UniversityJinan250100China

Abstract

A facile one-pot microwave irradiation reduction route has been developed for the synthesis of highly luminescent CdTe quantum dots using Na2TeO3 as the Te source in an aqueous environment. The synthesis parameters of this simple and rapid approach, including the reaction temperature and time, the pH of the reaction solution and the molar ratio of the 3-mercaptopropionic acid (MPA) stabilizer to Cd2+, have considerable influence on the particle size and photoluminescence quantum yield of the CdTe quantum dots. The photoluminescence quantum yield of CdTe quantum dots prepared using relatively short reaction times (10–40 min) reached 40%–60% (emission peaks at 550–640 nm). Furthermore, the resulting products could be used as fluorescent probes to detect Hg2+ ions in aqueous media. The response was linearly proportional to the concentration of Hg2+ ion in the range 8.0×10-9 mol/L to 2.0×10-6 mol/L with a detection limit of 2.7×10-9 mol/L.

Keywords: quantum dots, sensor, fluorescent, mercury, CdTe, microwave irradiation

References(34)

1

Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Light-emitting diodes made from cadmium selenide QDs and a semiconducting polymer. Nature 1994, 370, 354–357.

2

Achermann, M.; Petruska, M. A.; Kos, S.; Smith, D. L.; Koleske, D. D.; Klimov, V. I. Energy-transfer pumping of semiconductor QDs using an epitaxial quantum well. Nature 2004, 429, 642–646.

3

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

4

Barnham, K.; Marques, J. L.; Hassard, J.; O'Brien, P. Quantum-dot concentrator and thermodynamic model for the global redshift. Appl. Phys. Lett. 2000, 76, 1197–1199.

5

Tsutsui, T. Applied physics: A light-emitting sandwich filling. Nature 2002, 420, 752–755.

6

Oh, E.; Hong, M. -Y.; Lee, D.; Nam, S. -H.; Yoon, H. C.; Kim, H. -S. Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J. Am. Chem. Soc. 2005, 127, 3270–3271.

7

Ji, X.; Zheng, J.; Xu, J.; Rastogi, V. K.; Cheng, T. -C.; DeFrank, J. J.; Leblanc, R. M. (CdSe)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. J. Phys. Chem. B 2005, 109, 3793–3799.

8

Chen, Y. F.; Rosenzweig, Z. Luminescent CdS quantum dots as selective ion probes. Anal. Chem. 2002, 74, 5132–5138.

9

Jin, W. J.; Fernández-Argüelles, M. T.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Photoactivated luminescent CdSe quantum dots as sensitive cyanide probes in aqueous solutions. Chem. Commun. 2005, 883-885.

10

Chan, W. C. W.; Maxwell, D. J.; Gao, X. H.; Bailey, R. E.; Han, M. Y.; Nie, S. M. Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 2002, 13, 40–46.

11

Susha, A. S.; Javier, A. M.; Parak, W. J.; Rogach, A. L. Luminescent CdTe QDs as ion probes and pH sensors in aqueous solutions. Colloids Surf. A: Physicochem. Eng. Asp. 2006, 281, 40–43.

12

Yuan, J. P.; Guo, W. W.; Wang, E. K. Utilizing a CdTe quantum dots-enzyme hybrid system for the determination of both phenolic compounds and hydrogen peroxide. Anal. Chem. 2008, 80, 1141–1145.

13

Xia, Y. -S.; Zhu, C. -Q. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury(Ⅱ). Talanta 2008, 75, 215–221.

14

Xia, Y. S.; Zhu, C. Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag(Ⅰ). J. Lumin. 2008, 128, 166–172.

15

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

16

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS QDs using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

17

Talapin, D. V.; Haubold, S.; Rogach, A. L.; Kornowski, A.; Haase, M.; Weller, H. A novel organometallic synthesis of highly luminescent CdTe QDs. J. Phys. Chem. B 2001, 105, 2260–2263.

18

Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe QDs: Ligand effects on monomers and QDs. Chem. Mater. 2003, 15, 4300–4308.

19

Gaponik, N.; Talapin, D. V.; Rogach, A. L.; Hoppe, K.; Shevchenko, E. V.; Kornowski, A.; Eychmller, A.; Weller, H. Thiol-capping of CdTe QDs: An alternative to organometallic synthetic routes. J. Phys. Chem. B 2002, 106, 7177–7185.

20

Zhang, H.; Wang, L. P.; Xiong, H. M.; Hu, L. H.; Yang, B.; Li, W. Hydrothermal synthesis for high quality CdTe QDs. Adv. Mater. 2003, 15, 1712–1715.

21

Li, L.; Qian, H. F.; Ren, J. C. Rapid synthesis of highly luminescent CdTe QDs in the aqueous phase by microwave irradiation with controllable temperature. Chem. Commun. 2005, 528-530.

22

Qian, H. F.; Dong, C. Q.; Weng, J. F.; Ren, J. C. Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe QDs. Small 2006, 2, 747–751.

23

He, Y.; Sai, L. -M.; Lu, H. -T.; Hu, M.; Lai, W. -Y.; Fan, Q. -L.; Wang, L. -H.; Huang, W. Microwave-assisted synthesis of water-dispersed CdTe QDs with high luminescent efficiency and narrow size distribution. Chem. Mater. 2007, 19, 359–365.

24

He, Y.; Lu, H. -T.; Sai, L. -M.; Lai, W. -Y.; Fan, Q. -L.; Wang, L. -H.; Huang, W. Synthesis of CdTe QDs through program process of microwave irradiation. J. Phys. Chem. B 2006, 110, 13352–13356.

25

Gautam, U. K.; Rao, C. N. R. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process. J. Mater. Chem. 2004, 14, 2530–2535.

26

Cao, X. D.; Li, C. M.; Bao, H. F.; Bao, Q. L.; Dong, H. Fabrication of strongly fluorescent quantum dot-polymer composite in aqueous solution. Chem. Mater. 2007, 19, 3773–3779.

27

Bao, H. F.; Wang, E. K.; Dong, S. J. One-pot synthesis of CdTe QDs and shape control of luminescent CdTe-cystine nanocomposites. Small 2006, 2, 476–480.

28

Crosby, G. A.; Demas, J. N. Measurement of photoluminescence quantum yields. J. Phys. Chem. 1971, 75, 991–1024.

29

Yu, W. W.; Qu, L. H.; Guo, W. H.; Peng, X. G. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS QDs. Chem. Mater. 2003, 15, 2854–2860.

30

Li, L.; Qian, H. F.; Fang, N. H.; Ren, J. C. Significant enhancement of the quantum yield of CdTe nanocrystals synthesized in aqueous phase by controlling the pH and concentrations of precursor solutions. J. Lumin. 2006, 116, 59–66.

31

Cai, Z. X.; Yang, H.; Zhang, Y.; Yan, X. P. Preparation, characterization and evaluation of water-soluble L-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(Ⅱ) in aqueous solution. Anal. Chim. Acta 2006, 559, 234–239.

32

Li, J.; Mei, F.; Li, W. -Y.; He, X. -W.; Zhang, Y. -K. Study on the fluorescence resonance energy transfer between CdTe QDs and butyl-rhodamine B in the presence of CTMAB and its application on the detection of Hg(Ⅱ). Spectrochim. Acta A 2008, 70, 811–817.

33

Chen, B.; Yu, Y.; Zhou, Z. T.; Zhong, P. Synthesis of novel QDs as fluorescent sensors for Hg2+ ions. Chem. Lett. 2004, 33, 1608–1609.

34

Chen, J. L.; Gao, Y. C.; Xu, Z. B.; Wu, G. H.; Chen, Y. C.; Zhu, C. Q. A novel fluorescent array for mercury(Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal. Chim. Acta 2006, 577, 77–84.

File
nr-2-1-61_ESM.pdf (193 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 October 2008
Revised: 07 November 2008
Accepted: 14 November 2008
Published: 01 January 2009
Issue date: January 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

Helpful discussion with Prof. Yitai Qian and financial support from the National Natural Science Foundation of China (NSFC, 20501014), Program for New Century Excellent Talents in University (NCET) and National Basic Research Program of China (973 Program, 2005CB623601, 2007CB936602) is gratefully acknowledged.

Rights and permissions

Return