Journal Home > Volume 2 , Issue 1

The light emission enhancement behavior from single ZnO nanowires integrated with metallic contacts is investigated by micro-photoluminescence measurements. Apart from surface plasmon polaritons at the air/metal interface, the emission of a single ZnO nanowire can be coupled into guided modes of surface excitonplasmon polaritons (SEPPs). The out-coupling avenues of SEPP guided modes are modeled in the presence of nanostructures, such as corrugation and gratings, on the metal surface. The guided modes of SEPPs in metalcontacted ZnO nanowires are calculated using the effective index method. The enhanced light emission from single semiconductor nanowires shows promise for use in highly efficient nano-emitters and nano-lasers, as well as macroscopic solid state light sources with very high efficiency.


menu
Abstract
Full text
Outline
About this article

Surface Exciton-Plasmon Polariton Enhanced Light Emission via Integration of Single Semiconductor Nanowires with Metal Nanostructures

Show Author's information Xuejin Zhang1Pengwei Wang1Xinzheng Zhang1Jun Xu1Yongyuan Zhu2( )Dapeng Yu1( )
State Key Laboratory for Mesoscopic Physics, and Electron Microscopy LaboratoryDepartment of PhysicsPeking UniversityBeijing100871China
National Laboratory of Solid State MicrostructuresNanjing UniversityNanjing210093China

Abstract

The light emission enhancement behavior from single ZnO nanowires integrated with metallic contacts is investigated by micro-photoluminescence measurements. Apart from surface plasmon polaritons at the air/metal interface, the emission of a single ZnO nanowire can be coupled into guided modes of surface excitonplasmon polaritons (SEPPs). The out-coupling avenues of SEPP guided modes are modeled in the presence of nanostructures, such as corrugation and gratings, on the metal surface. The guided modes of SEPPs in metalcontacted ZnO nanowires are calculated using the effective index method. The enhanced light emission from single semiconductor nanowires shows promise for use in highly efficient nano-emitters and nano-lasers, as well as macroscopic solid state light sources with very high efficiency.

Keywords: Semiconductor nanowires, surface plasmon polaritons, emission enhancement, nanowire waveguides, gratings

References(21)

1

García-Vidal, F. J.; Pendry, J. B. Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 1996, 77, 1163–1166.

2

Ebbesen, T. W.; Lezec, L. J.; Chaemi, H. F.; Thio, T.; Wolff, P. A. Extraordinary optical transmission through subwavelength hole arrays. Nature 1998, 391, 667–669.

3

Fang, N.; Lee, H.; Sun, C.; Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005, 308, 534–537.

4

Barnes, W. L.; Dereux, A.; Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830.

5

Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 1946, 69, 681.

6

Diana, F. S.; David, A.; Meinel, I.; Sharma, R.; Weisbuch, C.; Nakamura, S.; Petroff, P. M. Photonic crystal-assisted light extraction from a colloidal quantum dot / GaN hybrid structure. Nano Lett. 2006, 6, 1116–1120.

7

Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605.

8

Neogi, A.; Lee, C. -W.; Everitt, H. O.; Kuroda, T.; Tackeuchi, A.; Yablonovitch, E. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 2002, 66, 153305.

9

Gontijo, I.; Boroditsky, M.; Yablonovitch, E.; Keller, S.; Mishra, U. K.; DenBaars, S. P. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 1999, 60, 11564–11567.

10

Okamoto, K.; Niki, I.; Scherer, A.; Narukawa, Y.; Mukai, T.; Kawakami, Y. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. Appl. Phys. Lett. 2005, 87, 071102.

11

Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 2004, 293, 1455–1457.

12

Duan, X.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.

13

Wagner, R. S.; Ellis, W. C. Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89–90.

14

Zhang, J.; Ye, Y. -H.; Wang, X.; Rochon, P.; Xiao, M. Coupling between semiconductor quantum dots and two-dimensional surface plasmons. Phys. Rev. B 2005, 72, 201306.

15

Zhang, X. J.; Wu, D. M.; Sun, C.; Zhang, X. Artificial phonon-plasmon polariton at the interface of piezoelectric metamaterials and semiconductors. Phys. Rev. B 2007, 76, 085318.

16

Yoshikawa, H.; Adachi, S. Optical constants of ZnO. Jpn. J. Appl. Phys. 1997, 36, 6237–6243.

17

Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, 1985.

18

Marcuse, D. Theory of Dielectric Optical Waveguides; Academic Press: San Diego, 1991.

19

Karalis, A.; Lidorikis, E.; Ibanescu, M.; Joannopoulos, J. D.; Soljačići, M. Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air. Phys. Rev. Lett. 2005, 95, 063901.

20

Dionne, J. A.; Sweatlock, L. A.; Atwater, H. A.; Polman, A. Planar metal plasmon waveguides: Frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys. Rev. B 2005, 72, 075405.

21

Cavallini, A.; Polenta, L.; Rossi, M.; Stoica, T.; Calarco, R.; Meijers, R. J.; Richter, T.; Lüth, H. Franz Keldysh effect in GaN nanowires. Nano Lett. 2007, 7, 2166–2170.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 12 October 2008
Accepted: 09 November 2008
Published: 01 January 2009
Issue date: January 2009

Copyright

© Tsinghua University Press and Springer-Verlag 2009

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, Nos. 90606023, 10574003, 10523001), a joint project with Research Grants Council of Hong Kong (NSFC/RGC 20731160012), and national key projects (2002CB613505, 2007CB936202, MOST). D. P. Yu is supported by the Cheung Kong Scholar Program, Ministry of Education, P. R. China.

Rights and permissions

Return