Journal Home > Volume 1 , Issue 6

A novel nano- and micro-integrated protein chip (NMIPC) that can detect proteins with ultrahigh sensitivity has been fabricated. A microfluidic network (μFN) was used to construct the protein chips, which allowed facile patterning of proteins and subsequent biomolecular recognition. Aqueous phase-synthesized, water-soluble fluorescent CdTe/CdS core-shell quantum dots (aqQDs), having high quantum yield and high photostability, were used as the signaling probe. Importantly, it was found that aqQDs were compatible with microfluidic format assays, which afforded highly sensitive protein chips for cancer biomarker assays.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A Nano- and Micro-Integrated Protein Chip Based on Quantum Dot Probes and a Microfluidic Network

Show Author's information Juan Yan1Mei Hu2Di Li1Yao He1,2Rui Zhao3Xingyu Jiang3Shiping Song1( )Lianhui Wang2( )Chunhai Fan1( )
Shanghai Institute of Applied Physics Chinese Academy of SciencesShanghai 201800 China
Laboratory of Advanced Materials (LAM) Fudan University, 220 Handan RoadShanghai 200433 China
National Center for NanoScience and Technology, No. 11, Beiyitiao, Zhongguancun Beijing 100080 China

Abstract

A novel nano- and micro-integrated protein chip (NMIPC) that can detect proteins with ultrahigh sensitivity has been fabricated. A microfluidic network (μFN) was used to construct the protein chips, which allowed facile patterning of proteins and subsequent biomolecular recognition. Aqueous phase-synthesized, water-soluble fluorescent CdTe/CdS core-shell quantum dots (aqQDs), having high quantum yield and high photostability, were used as the signaling probe. Importantly, it was found that aqQDs were compatible with microfluidic format assays, which afforded highly sensitive protein chips for cancer biomarker assays.

Keywords: Quantum dots, microfluidics, polydimethylsiloxane (PDMS), carcinoma embryonic antigen (CEA), microarray

References(35)

1

Ekins, R.; Chu, F. W. Microarrays: Their origins and applications. Trends Biotechnol. 1999, 17, 217–218.

2

MacBeath, G.; Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 2000, 289, 1760–1763.

3

Lueking, A.; Horn, M.; Eickhoff, H.; Bussow, K.; Lehrach, H.; Walter, G. Protein microarrays for gene expression and antibody screening. Anal. Biochem. 1999, 270, 103–111.

4

Hultschig, C.; Kreutzberger, J.; Seitz, H.; Konthur, Z.; Bussow, K.; Lehrach, H. Recent advances of protein microarrays. Curr. Opin. Chem. Biol. 2006, 10, 4–10.

5

Sauer, S.; Lange, B. M.; Gobom, J.; Nyarsik, L.; Seitz, H.; Lehrach, H. Miniaturization in functional genomics and proteomics. Nat. Rev. Genet. 2005, 6, 465–476.

6

Templin, M. F.; Stoll, D.; Schwenk, J. M.; Potz, O.; Kramer, S.; Joos, T. O. Protein microarrays: Promising tools for proteomic research. Proteomics 2003, 3, 2155–2166.

7

Haab, B. B. Methods and applications of antibody microarrays in cancer research. Proteomics 2003, 3, 2116–2122.

8

Eisenstein, M. Protein arrays – Growing pains. Nature 2006, 444, 959–962.

9

Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013–2016.

10

Chan, W. C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018.

11

Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 2005, 4, 435–446.

12

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

13

Peng, X. G.; Manna, L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 2000, 404, 59–61.

15

Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271, 933–937.

16

Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.

17

Tang, Z. Y.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires. Science 2002, 297, 237–240

18

Qu, L.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049–2055.

19

Bakalova, R.; Zhelev, Z.; Ohba, H.; Baba, Y. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J. Am. Chem. Soc. 2005, 127, 9328–9329.

20

Wuister, S. F.; Swart, I.; Driel, F. V.; Hickey, S. G.; Donega, C. M. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003, 3, 503–507.

21

Wang, Y.; Tang, Z.; Correa-Duarte, M. A.; Pastoriza-Santos, I.; Giersig, M.; Kotov, N. A.; Liz-Marzan, L. M. Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores. J. Phys. Chem. B 2004, 108, 15461–15469.

22

Bao, H.; Gong, Y.; Li, Z.; Gao, M. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure. Chem. Mater. 2004, 16, 3853–3859.

23

He, Y.; Lu, H.; Sai, L.; Su, Y.; Hu, M.; Fan, C.; Huang, W.; Wang, L. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure. Adv. Mater. 2008, 20, 3416–3421.

24

He, Y.; Lu, H.; Sai, L.; Lai, W.; Fan, Q.; Wang, L.; Huang, W. Microwave-assisted growth and characterization of water-dispersed CdTe/CdS core-shell nanocrystals with high photoluminescence. J. Phys. Chem. B 2006, 110, 13370–13374.

25

Balboni, I.; Chan, S. M.; Kattah, M.; Tenenbaum, J. D.; Butte, A. J.; Utz, P. J. Multiplexed protein array platforms for analysis of autoimmune diseases. Annu. Rev. Immunol. 2006, 24, 391–418.

26

Chan, S. M.; Ermann, J.; Su, L.; Fathman, C. G.; Utz, P. J. Protein microarrays for multiplex analysis of signal transduction pathways. Nat. Med. 2004, 10, 1390–1396.

27

Deng, Y.; Zhu, X. Y.; Kienlen, T.; Guo, A. Transport at the air/water interface is the reason for rings in protein microarrays. J. Am. Chem. Soc. 2006, 128, 2768–2769.

28

Jiang, X. Y.; Xu, Q.; Dertinger, S. K. W.; Stroock, A. D.; Fu, T.; Whitesides, G. M. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks. Anal. Chem. 2005, 77, 2338–2347.

29

McDonald, J. C.; Duffy, D. C.; Anderson, J. R.; Chiu, D. T.; Wu, H.; Schueller, O. J.; Whitesides, G. M. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000, 21, 27–40.

DOI
30

Whitesides, G. M. The origins and the future of microfluidics. Nature 2006, 442, 368–373.

31

Psaltis, D.; Quake, S. R.; Yang, C. Developing optofluidic technology through the fusion of microfluidics and optics. Nature 2006, 442, 381–386.

32

Bernard, A.; Michel, B.; Delamarche, E. Micromosaic immunoassays. Anal. Chem. 2001, 73, 8–12.

33

Wolf, M.; Juncker, D.; Michel, B.; Hunziker, P.; Delamarche, E. Simultaneous detection of C-reactive protein and other cardiac markers in human plasma using micromosaic immunoassays and self-regulating microfluidic networks. Biosens. Bioelectron. 2004, 19, 1193–1202.

34

Gyorvary, E. S.; O'Riordan, A.; Quinn, A. J.; Redmond, G.; Pum, D.; Sleyt, U. B. Biomimetic nanostructure fabrication: Nonlithographic lateral patterning and self-assembly of functional bacterial S-layers at silicon supports. Nano Lett. 2003, 3, 315–319.

35

Goldman, E. R.; Balighian, E. D.; Mattoussi, H.; Kuno, M. K.; Mauro, J. M.; Tran, P. T.; Anderson, G. P.; Avidin: A natural bridge for quantum dot-antibody conjugates. J. Am. Chem. Soc. 2002, 124, 6378–6382.

36

Jaiswal, J. K.; Goldman, E. R.; Simon, S. M. Use of quantum dots for live cell imaging. Nat. Methods 2004, 1, 73–78.

File
nr-1-6-490_ESM.pdf (350.3 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 19 August 2008
Revised: 03 November 2008
Accepted: 03 November 2008
Published: 01 December 2008
Issue date: December 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation (20873175 and 20725516), the Ministry of Science and Technology (2006CB933000, 2007CB936000, and 2007AA06A406), and the Shanghai Municipal Commission for Science and Technology (0852nm00400, 0752nm021).

Rights and permissions

This article is published with open access at Springerlink.com

Return