Journal Home > Volume 1 , Issue 6

Magnetic nanowires (NWs) are ideal materials for the fabrication of various multifunctional nanostructures which can be manipulated by an external magnetic field. Highly crystalline and textured nanowires of nickel (Ni NWs) and cobalt (Co NWs) with high aspect ratio (˜330) and high coercivity have been synthesized by electrodeposition using nickel sulphate hexahydrate (NiSO4·6H2O) and cobalt sulphate heptahydrate (CoSO4·7H2O) respectively on nanoporous alumina membranes. They exhibit a preferential growth along 〈110〉. A general mobility assisted growth mechanism for the formation of Ni and Co NWs is proposed. The role of the hydration layer on the resulting one-dimensional geometry in the case of potentiostatic electrodeposition is verified. A very high interwire interaction resulting from magnetostatic dipolar interactions between the nanowires is observed. An unusual low-temperature magnetisation switching for field parallel to the wire axis is evident from the peculiar high field M(T) curve.


menu
Abstract
Full text
Outline
About this article

On the Growth Mechanism of Nickel and Cobalt Nanowires and Comparison of Their Magnetic Properties

Show Author's information T. N Narayanan1M. M Shaijumon2Lijie Ci2P. M Ajayan2( )M. R Anantharaman1( )
Department of Physics Cochin University of Science & Technology, Cochin-22Kerala India
Department of Mechanical Engineering & Materials Science Rice UniversityHoustonTX 77005 USA

Abstract

Magnetic nanowires (NWs) are ideal materials for the fabrication of various multifunctional nanostructures which can be manipulated by an external magnetic field. Highly crystalline and textured nanowires of nickel (Ni NWs) and cobalt (Co NWs) with high aspect ratio (˜330) and high coercivity have been synthesized by electrodeposition using nickel sulphate hexahydrate (NiSO4·6H2O) and cobalt sulphate heptahydrate (CoSO4·7H2O) respectively on nanoporous alumina membranes. They exhibit a preferential growth along 〈110〉. A general mobility assisted growth mechanism for the formation of Ni and Co NWs is proposed. The role of the hydration layer on the resulting one-dimensional geometry in the case of potentiostatic electrodeposition is verified. A very high interwire interaction resulting from magnetostatic dipolar interactions between the nanowires is observed. An unusual low-temperature magnetisation switching for field parallel to the wire axis is evident from the peculiar high field M(T) curve.

Keywords: electrodeposition, Magnetic nanowires, mobility assisted growth, magnetostatic interaction, magnetisation switching

References(35)

1

Puntes, V. F.; Krishnan, K. M.; Alivisatos, A. P. Colloidal nanocrystal shape and size control: The case of cobalt. Science 2001, 291, 2115–2117.

2

Jung, S. W.; Park, W. I.; Yi, G. C.; Kim, M. Y. Fabrication and controlled magnetic properties of Ni/ZnO nanorod heterostructures. Adv. Mater. 2003, 15, 1358–1361.

3

Bao, J.; Liang, Y.; Xu, Z.; Si, L. Facile synthesis of hollow nickel submicrometer spheres. Adv. Mater. 2003, 15, 1832–1835.

4

Sahoo, S.; Petracic, O.; Kleemann, W.; Stappert, S.; Dumpich, G.; Nordblad, P.; Cardoso, S.; Freitas, P. P. Cooperative versus superparamagnetic behavior of dense magnetic nanoparticles in Co80Fe20/Al2O3 multilayers. Appl. Phys. Lett. 2003, 82, 4116–4118.

5

Garcia, J. M.; Asenjo, A.; Velazquez, J.; Garcia, D.; Vazquez, M.; Aranda, P.; Hitzky, E. R. Magnetic behavior of an array of cobalt nanowires. J. Appl. Phys. 1999, 85, 5480–5482.

6

Martin, J. I.; Nogues, J.; Liu, K.; Vicent, J. L.; Schuller, I. K. Ordered magnetic nanostructures: Fabrication and properties. J. Magn. Magn. Mater. 2003, 256, 449–451.

7

Yu, C. Y.; Yu, Y. L.; Sun, H. Y.; Xu, T.; Li, X. H.; Li, W.; Gao, Z. S.; Zhang, X. Y. Enhancement of the coercivity of electrodeposited nickel nanowire arrays. Mater. Lett. 2007, 61, 1859–1862.

8

Whitney, T. M.; Searson, P. C.; Jiang, J. S.; Chien, C. L. Fabrication and magnetic properties of arrays of metallic nanowires. Science 1993, 261, 1316–1319.

9

Basu, S.; Chatterjee, S.; Saha, M.; Bandyopadhyay, M.; Mistry, K.; Sengupta, K. Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases. Sens. Actuat. B-Chem. 2001, 79, 182–185.

10

Meng, G.; Cao, A.; Cheng, J. Y.; Vijayaraghavan, A.; Jung, Y. J.; Shima, M.; Ajayan, P. M. Ordered Ni nanowire tip arrays sticking out of the anodic aluminum oxide template. J. Appl. Phys. 2005, 97, 064303.

11

Lew, K. K.; Redwing, J. Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates. J. Cryst. Growth 2003, 254, 14–17.

12

Wang, Y. C.; Leu, I. C.; Hon, M. H. Preparation and characterization of nanosized ZnO arrays by electrophoretic deposition. J. Cryst. Growth 2002, 237, 564–567.

13

Athanssiou, E. K.; Grossmann, P.; Grass, R. N.; Stark, W. J. Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment. Nanotechnology 2007, 18, 165606.

14

Fert, A.; Piraux, L. Magnetic nanowires. J. Magn. Magn. Mater. 1999, 200, 338–358.

15

Fasol, G. Nanowires: Small is beautiful. Science 1998, 280, 545–546.

16

Martin, C. R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966.

17

Kodama, R. H.; Berkwitz, A. E.; Meniff, E. J.; Foner, S. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 1996, 77, 394–397.

18

Goya, G. F.; Forseca, F. C.; Jardin, R. F.; Muceillo, R.; Carreno, N. L. V.; Longo, E.; Leite, E. R. Magnetic dynamics of single-domain Ni nanoparticles. J. Appl. Phys. 2003, 93, 6531–6533.

19

Kafil, M. R.; Saibal, R. Thermal diffusivity of nonfractal and fractal nickel nanowires. J. Appl. Phys. 2008, 103, 084302.

20

Escrig, J.; Lavin, R.; Palma, J. L.; Denardin, J. C.; Altbir, D.; Cortes, A.; Gomez, H. Geometry dependence of coercivity in Ni nanowire arrays. Nanotechnology 2008, 19, 075713.

21

Rivas, J.; Kazadi Mukenga Bantu, A.; Zaragoza, G.; Blanco, M. C.; Lopez-Quintela, M. A. Preparation and magnetic behavior of arrays of electrodeposited Co nanowires. J. Magn. Magn. Mater. 2002, 249, 220–225.

22

Gubbiotti, G.; Tacchi, S.; Carlotti, G.; Vavassori, P.; Singh, N.; Goolaup, S.; Adeyeye, A. O.; Stashkevich, A.; Kostylev, M. Magnetostatic interaction in arrays of nanometric permalloy wires: A magneto-optic Kerr effect and a Brillouin light scattering study. Phys. Rev. B 2005, 72, 224413.

23

Goolaup, S.; Adeyeye, A. O.; Singh, N. Dipolar coupling in closely packed pseudo-spin-valve nanowire arrays. J. Appl. Phys. 2006, 100, 114301.

24

Ou, F. S.; Shaijumon, M. M.; Ajayan, P. M. Controlled manipulation of giant hybrid in-organic assemblies. Nano Lett. 2008, 8, 1853–1857.

25

Narayanan, T. N.; Shaijumon, M. M.; Ajayan, P. M.; Anantharaman, M. R. Synthesis of high coercivity cobalt nanotubes with acetate precursors and elucidation of the mechanism of growth. J. Phys. Chem. C 2008, 112, 14281–14285.

26

Bantu, A. K. M.; Rivas, J.; Zaragoza, G.; Quintela, M. A. L.; Blanco, M. C. Structure and magnetic properties of electrodeposited cobalt nanowires. J. Appl. Phys. 2001, 89, 3393–3397.

27

Cao, H.; Wang, L; Qiu, Y.; Wu, Q.; Wang, G.; Zhang, L.; Liu, X. Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. ChemPhysChem 2006, 7, 1500–1504.

28

Cao, H.; Tie, C.; Xu, Z.; Hong, J.; Sang, H. Array of nickel nanowires enveloped in polyaniline nanotubules and its magnetic behavior. Appl. Phys. Lett. 2001, 78, 1592–1594.

29

Bao, J.; Tie, C.; Xu, Z.; Zhou, Q.; Shen, D.; Ma, Q. Template synthesis of an array of nickel nanotubules and its magnetic behavior. Adv. Mater. 2001, 13, 1631–1633.

DOI
30

Chikazumi, S. Physics of Magnetism; John Wiley & Sons: New York, 1964.

31

Sun, L.; Hao, Y.; Chein, C. L.; Searson, P. C. Tuning the properties of magnetic nanowires. IBM J. Res. Dev. 2005, 49, 79–102.

32

Sellmyer, D. J.; Zheng, M.; Skomski, R. Magnetism of Fe, Co and Ni nanowires in self-assembled arrays. J. Phys. : Condens. Mat. 2001, 13, R433–R460.

33

Heydon, G. P.; Hoon, S. R.; Farley, A. N.; Tomlinson, S. L.; Valera, M. S.; Attenborough, K.; Schwarzacher, W. Magnetic properties of electrodeposited nanowires. J. Phys. D: Appl. Phys. 1997, 30, 1083–1093.

34

Henry, Y.; Ounadjela, K.; Piraux, L.; Dubois, S.; George, J. M.; Duvail, J. L. Magnetic anisotropy and domain patterns in electrodeposited cobalt nanowires. Eur. Phys. J. B 2001, 20, 35–54.

35

Ounadjela, K.; Ferre, R.; Louail, L.; George, J. M.; Maurice, J. L.; Pirax, L.; Dubuis, S. Magnetization reversal in cobalt and nickel electrodeposited nanowires. J. Appl. Phys. 1997, 81, 5455–5457.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 22 August 2008
Revised: 11 October 2008
Accepted: 28 October 2008
Published: 01 December 2008
Issue date: December 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

T. N. Narayanan acknowledges the financial support received from the Interconnect Focus Center at Rensselaer Polytechnic Institute, Troy, New York, USA. T. N. Narayanan thanks Kerala State Council for Science, Technology and Environment (D.O. No. 004/FSHIP/05/KSCSTE), Kerala, India for financial support in the form of a fellowship. T. N. Narayanan and M. R. Anantharaman acknowledge Prof. Gunter Schatz, Prof. Manfred Albrecht, and Dr. Ildico Guhr, Department of Physics, University of Konstanz, Germany for SQUID measurements and fruitful discussions. M. R. Anantharaman thanks DST-DAAD PPP for awarding an exchange programme.

Rights and permissions

This article is published with open access at Springerlink.com

Return