Journal Home > Volume 1 , Issue 6

High quality InAs/InP/ZnSe core/shell/shell quantum dots have been grown by a one-pot approach. This engineered quantum dots with unique near-infrared (NIR) fluorescence, possessing outstanding optical properties, and the biocompatibility desired for in vivo applications. The resulting quantum dots have significantly lower intrinsic toxicity compared to NIR emissive dots containing elements such as cadmium, mercury, or lead. Also, these newly developed ultrasmall non-Cd containing and NIR-emitting quantum dots showed significantly improved circulation half-life and minimal reticuloendothelial system (RES) uptake.


menu
Abstract
Full text
Outline
About this article

InAs/InP/ZnSe Core/Shell/Shell Quantum Dots as Near-Infrared Emitters: Bright, Narrow-Band, Non-Cadmium Containing, and Biocompatible

Show Author's information Renguo Xie1Kai Chen2Xiaoyuan Chen2Xiaogang Peng1( )
Department of Chemistry and Biochemistry University of ArkansasFayettevilleAR 72701 USA
Molecular Imaging Program at Stanford (MIPS) Department of Radiology and Bio-X Program Stanford University School of MedicineStanfordCA 94305-5484 USA

Abstract

High quality InAs/InP/ZnSe core/shell/shell quantum dots have been grown by a one-pot approach. This engineered quantum dots with unique near-infrared (NIR) fluorescence, possessing outstanding optical properties, and the biocompatibility desired for in vivo applications. The resulting quantum dots have significantly lower intrinsic toxicity compared to NIR emissive dots containing elements such as cadmium, mercury, or lead. Also, these newly developed ultrasmall non-Cd containing and NIR-emitting quantum dots showed significantly improved circulation half-life and minimal reticuloendothelial system (RES) uptake.

Keywords: Quantum dots, toxicity, InAs, near-infrared (NIR)

References(20)

1

Bruchez, M., Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 1998, 281, 2013-2016.

2

Chan, W. C. W.; Nie, S. M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016-2018.

3

Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759-1762.

4

Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 2003, 300, 1434-1436.

5

Kim, S.; Lim, Y. T.; Soltesz, E. G.; De Grand, A. M.; Lee, J.; Nakayama, A.; Parker, J. A.; Mihaljevic, T.; Laurence, R. G.; Dor, D. M.; Cohn, L. H.; Bawendi, M. G.; Frangioni, J. V. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 2004, 22, 93-97.

6

Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969-976.

7

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundarensan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538-544.

8

Zimmer, J. P.; Kim, S. W.; Ohnishi, S.; Tanaka, E.; Frangioni, J. V.; Bawendi, M. G. Size series of small indium arsenide-zinc selenide core-shell nanocrystals and their application to in vivo imaging. J. Am. Chem. Soc. 2006, 128, 2526-2527.

9

Guzelian, A. A.; Banin, U.; Kadavanich, A. V.; Peng, X.; Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 1996, 69, 1432-1434.

10

Cao, Y. W.; Banin, U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem. Int. Ed. 1999, 38, 3692-3694.

DOI
11

Qu, L.H.; Peng, X. G. Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 2002, 124, 2049-2055.

12

Talapin, D. V.; Rogach, A. L.; Shevchenko, E. V.; Kornowski, A.; Haase, M.; Weller, H. Dynamic distribution of growth rates within the ensembles of colloidal Ⅱ-Ⅵ and Ⅲ-Ⅴ semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J. Am. Chem. Soc. 2002, 124, 5782-5790.

13

Battaglia, D.; Peng. X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027-1030.

14

Yu, P. R.; Beard, M. C.; Ellingson, R. J.; Ferrere, S.; Curtis, C.; Drexler, J.; Luiszer, F.; Nozik, A. J. Absorption cross-section and related optical properties of colloidal InAs quantum dots. J. Phys. Chem. B 2005, 109, 7084-7087.

15

Aharoni, A.; Mokari, T.; Popov, I.; Banin, U. Synthesis of InAs/CdSe/ZnSe core/shell/shell structures with bright and stable near-infrared fluorescence. J. Am. Chem. Soc. 2006, 128, 257-264.

16

Cai, W. B.; Shin, D. W.; Chen, K.; Gheysens, O.; Cao, Q. Z.; Wang, S. X.; Gambhir, S. S.; Chen, X, Y. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006, 6, 669-676.

17

Xie, R.G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core-shell nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 7677-7680.

18

Li, J. J.; Wang, A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567-12575.

19

Schipper, M. L.; Cheng, Z.; Lee, S. W.; Bentolila, L. A.; Iyer, G.; Rao, J, H.; Chen, X. Y.; Wu, A. M.; Weiss, S.; Gambhir, S. S. Micro PET-based biodistribution of quantum dots in living mice. J. Nucl. Med. 2007, 48, 1511-1518.

20

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203-212.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 16 October 2008
Revised: 26 October 2008
Accepted: 26 October 2008
Published: 01 December 2008
Issue date: December 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work was supported in part by the National Cancer Institute (NCI) (R21 CA121842, P50 CA114747, and U54 CA119367), the National Institute of Health (R43 EB005072), and the National Science Foundation (CHE-0554812).

Rights and permissions

This article is published with open access at Springerlink.com

Return