Journal Home > Volume 1 , Issue 6

Bacillus subtilis spores (a simulant of Bacillus anthracis) have been imaged by two-photon luminescence (TPL) microscopy, using gold nanorods (GNRs) functionalized with a cysteine-terminated homing peptide. Control experiments using a peptide with a scrambled amino acid sequence confirmed that the GNR targeting was highly selective for the spore surfaces. The high sensitivity of TPL combined with the high affinity of the peptide labels enables spores to be detected with high fidelity using GNRs at femtomolar concentrations. It was also determined that GNRs are capable of significant TPL output even when irradiated at near infrared (NIR) wavelengths far from their longitudinal plasmon resonance (LPR), permitting considerable flexibility in the choice of GNR aspect ratio or excitation wavelength for TPL imaging.


menu
Abstract
Full text
Outline
About this article

Two-Photon Luminescence Imaging of Bacillus Spores Using Peptide-Functionalized Gold Nanorods

Show Author's information Wei He1,Walter A. Henne1,3,Qingshan Wei1Yan Zhao1Derek D. Doorneweerd1,3Ji-Xin Cheng1,2Philip S. Low1,3Alexander Wei1,3( )
Purdue University Department of Chemistry, 560 Oval Drive, West Lafayette IN 47907 USA
Purdue University Weldon School of Biomedical Engineering, 206 S. Martin Jischke DriveWest Lafayette IN 47907 USA
Center of Sensing Science and Technology Purdue UniversityWest Lafayette IN 47907 USA

These authors contributed equally to this work.

Abstract

Bacillus subtilis spores (a simulant of Bacillus anthracis) have been imaged by two-photon luminescence (TPL) microscopy, using gold nanorods (GNRs) functionalized with a cysteine-terminated homing peptide. Control experiments using a peptide with a scrambled amino acid sequence confirmed that the GNR targeting was highly selective for the spore surfaces. The high sensitivity of TPL combined with the high affinity of the peptide labels enables spores to be detected with high fidelity using GNRs at femtomolar concentrations. It was also determined that GNRs are capable of significant TPL output even when irradiated at near infrared (NIR) wavelengths far from their longitudinal plasmon resonance (LPR), permitting considerable flexibility in the choice of GNR aspect ratio or excitation wavelength for TPL imaging.

Keywords: Bionanotechnology, nanorods, nonlinear optics, pathogen detection, peptides

References(41)

1

Brown, E. B.; Campbell, R. B.; Tsuzuki, Y.; Xu, L.; Carmeliet, P.; Fukumura, D.; Jain, R. K. In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy. Nat. Med. 2001, 7, 864–868.

2

Helmchen, F.; Denk, W. Deep tissue two-photon microscopy. Nat. Methods 2005, 2, 932–940.

3

Yelin, D.; Oron, D.; Thiberge, S.; Moses, E.; Silberberg, Y. Multiphoton plasmon-resonance microscopy. Opt. Express 2003, 11, 1385–1391.

4

Zhu, L.; Loo, W. T. Y.; Chow, L. W. C. Circulating tumor cells in patients with breast cancer: Possible predictor of micro-metastasis in bone marrow but not in sentinel lymph nodes. Biomed. Pharmacother. 2005, 59, S355–S358.

5

Bouhelier, A.; Bachelot, R.; Lerondel, G.; Kostcheev, S.; Royer, P.; Wiederrecht, G. P. Surface plasmon characteristics of tunable photoluminescence in single gold nanorods. Phys. Rev. Lett. 2005, 95, 267405.

6

Imura, K.; Nagahara, T.; Okamoto, H. Plasmon mode imaging of single gold nanorods. J. Am. Chem. Soc. 2004, 126, 12730–12731.

7

Imura, K.; Nagahara, T.; Okamoto, H. Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes. J. Phys. Chem. B 2005, 109, 13214–13220.

8

Wang, H.; Huff, T. B.; Zweifel, D. A.; He, W.; Low, P. S.; Wei, A.; Cheng, J. -X. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. P. Natl. Acad. Sci. U.S. A. 2005, 102, 15752–15756.

9

Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.

10

Huff, T. B.; Hansen, M. N.; Zhao, Y.; Cheng, J. -X.; Wei, A. Controlling the cellular uptake of gold nanorods. Langmuir 2007, 23, 1596–1599.

11

Huff, T. B.; Tong, L.; Zhao, Y.; Hansen, M. N.; Cheng, J. -X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine 2007, 2, 125–132.

12

Tong, L.; Zhao, Y.; Huff, T. B.; Hansen, M. N.; Wei, A.; Cheng, J. -X. Gold nanorods mediate tumor cell death by compromising membrane integrity. Adv. Mater. 2007, 19, 3136–3141.

13

Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J. Phys. Chem. B 2006, 110, 7238–7248.

14

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

15

Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

16

Zweifel, D. A.; Wei, A. Sulfide-arrested growth of gold nanorods. Chem. Mater. 2005, 17, 4256–4261.

17

Liao, H.; Hafner, J. H. Gold nanorod bioconjugates. Chem. Mater. 2005, 17, 4636–4641.

18

Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug. Chem. 2007, 18, 1490–1497.

19

Zhao, Y.; Pérez-Segarra, W.; Shi, Q.; Wei, A. Dithiocarbamate assembly on gold. J. Am. Chem. Soc. 2005, 127, 7328–7329.

20

Turnbough, C. L., Jr. Discovery of phage display peptide ligands for species-specific detection of Bacillus spores. J. Microbiol. Meth. 2003, 53, 263–271.

21

Stachowiak, J. C.; Shugard, E. E.; Mosier, B. P.; Renzi, R. F.; Caton, P. F.; Ferko, S. M.; Van de Vreugde, J. L.; Yee, D. D.; Haroldsen, B. L.; Vandernoot, V. A. Autonomous microfluidic sample preparation system for protein profile-based detection of aerosolized bacterial cells and spores. Anal. Chem. 2007, 79, 5763–5770.

22

Dhayal, B.; Henne, W. A.; Doorneweerd, D. D.; Reifenberger, R. G.; Low, P. S. Detection of Bacillus subtilis spores using peptide-functionalized cantilever arrays. J. Am. Chem. Soc. 2006, 128, 3716–3721.

23

Clark Burton, N.; Adhikari, A.; Grinshpun, S. A.; Hornung, R.; Reponen, T. The effect of filter material on bioaerosol collection of Bacillus subtilis spores used as a Bacillus anthracis simulant. J. Environ. Monitor. 2005, 7, 475–480.

24

Logan, N. A.; Carman, J. A. Identification of Bacillus anthracis by API tests. J. Med. Microbiol. 1985, 20, 75–85.

25

Fasanella, A.; Losito, S. PCR assay to detect Bacillus anthracis spores in heat-treated specimens. J. Clin. Microbiol. 2003, 41, 896–899.

26

Farrell, S.; Halsall, H. B. Immunoassay for B. globigii spores as a model for detecting B. anthracis spores in finished water. Analyst 2005, 130, 489–497.

27

Bashir, R. BioMEMS: State-of-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 2004, 56, 1565–1586.

28

Knurr, J.; Benedek, O. Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. Appl. Environ. Microbiol. 2003, 69, 6841–6847.

29

Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. A. Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 2005, 105, 1025–1102.

30

Yu, C.; Irudayaraj, J. Multiplex biosensor using gold nanorods. Anal. Chem. 2007, 79, 572–579.

31

Ding, H.; Yong, K. -T.; Roy, I.; Pudavar, H. E.; Law, W. C.; Bergey, E. J.; Prasad, P. N. Gold nanorods coated with multilayer polyelectrolyte as contrast agents for multimodal imaging. J. Phys. Chem. C 2007, 111, 12552–12557.

32

Gole, A.; Murphy, C. J. Polyelectrolyte-coated gold nanorods: Synthesis, characterization and immobilization. Chem. Mater. 2005, 17, 1325–1330.

33

Gole, A.; Murphy, C. J. Azide-derivatized gold nanorods: Functional materials for "click" chemistry. Langmuir 2008, 24, 266–272.

34

Kim, K.; Huang, S. -W.; Ashkenazi, S.; O'Donnell, M.; Agarwal, A.; Kotov, N. A.; Denny, M. F.; Kaplan, M. J. Photoacoustic imaging of early inflammatory response using gold nanorods. Appl. Phys. Lett. 2007, 90, 223901.

35

Takahashi, H.; Niidome, Y.; Niidome, T.; Kaneko, K.; Kawasaki, H.; Yamada, H. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity. Langmuir 2006, 22, 2–5.

36
Leonov, A. P.; Zheng, J.; Clogston, J. D.; Stern, S. T.; Patri, A. K.; Wei, A. Detoxification of gold nanorods by treatment with polystyrenesulfonate. ACS Nano, in press.
37

Grabar, K. C.; Allison, K. J.; Baker, B. E.; Bright, R. M.; Brown, K. R.; Freeman, R. G.; Fox, A. P.; Keating, C. D.; Musick, M. D.; Natan, M. J. Two-dimensional arrays of colloidal gold particles: A flexible approach to macroscopic metal surfaces. Langmuir 1996, 12, 2353–2361.

38

Antony, A. C.; Low, P. S. Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv. Drug Deliv. Rev. 2004, 56, 1055–1058.

39

Leamon, C. P.; Low, P. S. Delivery of macromolecules into living cells: A method that exploits folate receptor endocytosis. P. Natl. Acad. Sci. U.S. A. 1991, 88, 5572–5526.

40

Pissuwan, D.; Valenzuela, S. M.; Miller, C. M.; Cortie, M. B. A golden bullet? Selective targeting of Toxoplasma gondii tachyzoites using antibody-functionalized gold nanorods. Nano Lett. 2007, 7, 3808–3812.

41

Norman, R. S.; Stone, J. W.; Gole, A.; Murphy, C. J.; Sabo-Attwood, T. L. Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008, 8, 302–306.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 30 June 2008
Revised: 22 October 2008
Accepted: 22 October 2008
Published: 01 December 2008
Issue date: December 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work is supported by the National Institute of Health (EB-001777) and also by the Department of Defense (W911SR-08-C-0001), administered through the U.S. Army RDECOM (Edgewood Contracting Division) and the Center for Sensing Science and Technology at Purdue University. We gratefully acknowledge Prof. Arthur Aronson for providing B. subtilis spores, Dr. Dorota Inerowicz for quantitative peptide analysis, and Prof. Ron Reifenberger, Prof. Yeong Kim, Dr. Haifeng Wang, and Dr. Alexei Leonov for helpful discussions.

Rights and permissions

This article is published with open access at Springerlink.com

Return