Journal Home > Volume 1 , Issue 6

This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2. A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.


menu
Abstract
Full text
Outline
About this article

Synthesis and Optical Properties of Cubic Gold Nanoframes

Show Author's information Leslie Au1Yeechi Chen1Fei Zhou2Pedro H. C. Camargo3Byungkwon Lim3Zhi-Yuan Li2David S. Ginger1Younan Xia3( )
Department of Chemistry University of WashingtonSeattleWashington 98195 USA
Institute of Physics Chinese Academy of SciencesBeijing 100080 China
Department of Biomedical Engineering Washington UniversitySt. LouisMissouri 63130 USA

Abstract

This paper describes a facile method of preparing cubic Au nanoframes with open structures via the galvanic replacement reaction between Ag nanocubes and AuCl2. A mechanistic study of the reaction revealed that the formation of Au nanoframes relies on the diffusion of both Au and Ag atoms. The effect of the edge length and ridge thickness of the nanoframes on the localized surface plasmon resonance peak was explored by a combination of discrete dipole approximation calculations and single nanoparticle spectroscopy. With their hollow and open structures, the Au nanoframes represent a novel class of substrates for applications including surface plasmonics and surface-enhanced Raman scattering.

Keywords: localized surface plasmon resonance, galvanic replacement, surface-enhanced Raman scattering, hollow nanostructures, Gold nanostructures

References(41)

1

Kim, S. W.; Kim, M.; Lee, W. Y.; Hyeon, T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions. J. Am. Chem. Soc. 2002, 124, 7642–7643.

2

Sun, Y.; Xia, Y. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 2002, 74, 5297–5305.

3

Portney, N. G.; Ozkan, M. Nano-oncology: Drug delivery, imaging, and sensing. Anal. Bioanal. Chem. 2006, 384, 620–630.

4

Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z. -Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 2005, 5, 473–477.

5

Chen, J.; Wiley, B. J.; Li, Z. -Y.; Campbell, D.; Saeki, F.; Cang, H.; Au, L.; Lee, J.; Li, X.; Xia, Y. Gold nanocages: Engineering their structure for biomedical applications. Adv. Mater. 2005, 17, 2255–2261.

6

Cang, H.; Sun, T.; Li, Z. -Y.; Chen, J.; Wiley, B. J.; Xia, Y.; Li, X. Gold nanocages as contrast agents for spectroscopic and conventional optical coherence tomography. Opt. Lett. 2005, 30, 3048–3050.

7

Loo, C.; Lin, A.; Hirsch, L.; Lee, M. H.; Barton, J.; Halas, N.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 2004, 3, 33–40.

8

Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z. -Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano Lett. 2007, 7, 1318–1322.

9

Hirsch, L. R.; Gobin, A. M.; Lowery, A. R.; Tam, F.; Drezek, R. A.; Halas, N. J.; West, J. L. Metal nanoshells. Ann. Biomed. Eng. 2006, 34, 15–22.

10

Au, L.; Zheng, D.; Zhou, F.; Li, Z. -Y.; Li, X.; Xia, Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008, 2, 1645–1652.

11

Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, , 298, 2176–2179.

12

Sun, Y.; Mayers, B.; Xia, Y. Metal nanostructures with hollow interiors. Adv. Mater. 2003, 15, 641–646.

13

Wiley, B. J.; Sun, Y.; Chen, J.; Cang, H.; Li, Z. -Y.; Li, X.; Xia, Y. Shape-controlled synthesis of silver and gold nanostructures. MRS Bull. 2005, 30, 356–361.

14

Yang, J.; Lee, J. Y.; Too, H. P. Core-shell Ag-Au nanoparticles from replacement reaction in organic medium. J. Phys. Chem. B 2005, 109, 19208–19212.

15

Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z. -Y.; Xia, Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 2006, 128, 14776–14777.

16

Yin, Y.; Erdonmez, C.; Aloni, S.; Alivisatos, A. P. Faceting of nanocrystals during chemical transformation: From solid silver spheres to hollow gold octahedra. J. Am. Chem. Soc. 2006, 128, 12671–12673.

17

Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

18

Chen, J.; Wiley, B. J.; McLellan, J.; Xiong, Y.; Li, Z. -Y.; Xia, Y. Optical properties of Pd–Ag and Pt–Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005, 5, 2058–2062.

19

Lu, X.; Au, L.; McLellan, J.; Li, Z. -Y.; Marquez, M.; Xia, Y. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with an aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1767.

20

Au, L.; Lu, X.; Xia, Y. A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl2 or AuCl4. Adv. Mater. 2008, 20, 2517–2522.

21

Xiong, Y.; Wiley, B. J.; Chen, J.; Li, Z. -Y.; Yin, Y.; Xia, Y. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 2005, 44, 7913–7917.

22

Kim, D.; Park, J.; An, K.; Yang, N. -K.; Park, J. -G.; Hyeon, T. Synthesis of hollow iron nanoframes. J. Am. Chem. Soc. 2007, 129, 5812–5813.

23

Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett. 2006, 432, 491–496.

24

Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

25

Sieradzki, K. Curvature effects in alloy dissolution. J. Electrochem. Soc. 1993, 140, 2868–2872.

26

Roosen, A. R.; Carter, W. C. Simulations of microstructural evolution: Anisotropic growth and coarsening. Physica A 1998, 261, 232–247.

27

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

28

Wiley, B. J.; Sun, Y.; Mayers, B.; Xia, Y. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.

29

Tao, A.; Sinsermsuksakul, P.; Yang, P. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597–4601.

30

Seo, D.; Yoo, C. I.; Park, J. C.; Park, S. M.; Ryu, S.; Song, H. Directed surface overgrowth and morphology control of polyhedral gold nanocrystals. Angew. Chem. Int. Ed. 2008, 47, 763–767.

31

Dick, K.; Dhanasekaran, T.; Zhang, Z.; Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 2002, 124, 2312–2317.

32

Shi, H.; Zhang, L.; Cai, W. Composition modulation of optical absorption in AgxAu1–x alloy nanocrystals in situ formed within pores of mesoporous silica. J. Appl. Phys. 2000, 87, 1572–1574.

33

McLellan, J. M.; Siekkinen, A.; Chen, J.; Xia, Y. Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 2006, 247, 122–126.

34

Wiley, B. J.; Im, S. H.; Li, Z. -Y.; McLellan, J. M.; Siekkinen, A.; Xia, Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 2006, 110, 15666–15675.

35

Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y.; Li, Z. -Y.; Ginger, D. S.; Xia, Y. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7, 1032–1036.

36

McLellan, J. M.; Li, Z. -Y.; Siekkinen, A. R.; Xia, Y. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett. 2007, 7, 1013–1017.

37

Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 2005, 5, 2034–2038.

38

Chen, Y.; Munechika, K.; Ginger, D. S. Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles. Nano Lett. 2007, 7, 690–696.

39

Chen, Y.; Munechika, K.; Plante, I. J. -L.; Munro, A. M.; Skrabalak, S.; Xia, Y.; Ginger, D. S. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl. Phys. Lett. 2008, 93, 053106.

40

Munechika, K.; Smith, J. M.; Chen, Y.; Ginger, D. S. Plasmon line widths of single silver nanoprisms as a function of particle size and plasmon peak position. J. Phys. Chem. C, 2007, 111, 18906–18911.

41

Chen, Y.; Munechika, K.; Ginger, D. S. Bioenabled nanophotonics. MRS Bull. 2008, 33, 536–542.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 September 2008
Revised: 14 October 2008
Accepted: 17 October 2008
Published: 01 December 2008
Issue date: December 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work was supported in part by a Director's Pioneer Award from the NIH (5DPOD000798, Y.X.), the Air Force Office of Scientific Research (D.S.G. and Y.C.), the National Science Foundation (DMR 0520567, D.S.G. and Y.C.), and the National Natural Science Foundation of China (10525419, 60736041, and 10874238, Z.Y.L.). L.A. thanks the Center for Nanotechnology at the UW for an IGERT Fellowship funded by the NSF and NCI.

Rights and permissions

This article is published with open access at Springerlink.com

Return