Journal Home > Volume 1 , Issue 5

A simple method for high-yield, chemical vapor deposition (CVD) synthesis of serpentine carbon nanotubes, employing quartz substrates and a molecular cluster catalyst, is described. The growth mechanism is analyzed by controlled addition of nanoscale barriers, and by mechanical analysis of the curved sections. The serpentine structures are used to study the electrical transport properties of parallel arrays of identical nanotubes, which show three-terminal conductance that scales linearly with the number of nanotube segments.


menu
Abstract
Full text
Outline
About this article

Growth of Serpentine Carbon Nanotubes on Quartz Substrates and Their Electrical Properties

Show Author's information Seokwoo Jeon1,2,3Changgu Lee2,3Jinyao Tang1,3James Hone2,3( )Colin Nuckolls1,3
Department of ChemistryColumbia UniversityNew YorkNY10027USA
Department of Mechanical EngineeringColumbia UniversityNew YorkNY10027USA
The Columbia University Nanoscale Science and Engineering CenterColumbia UniversityNew YorkNY10027USA

Abstract

A simple method for high-yield, chemical vapor deposition (CVD) synthesis of serpentine carbon nanotubes, employing quartz substrates and a molecular cluster catalyst, is described. The growth mechanism is analyzed by controlled addition of nanoscale barriers, and by mechanical analysis of the curved sections. The serpentine structures are used to study the electrical transport properties of parallel arrays of identical nanotubes, which show three-terminal conductance that scales linearly with the number of nanotube segments.

Keywords: quartz substrate, electronics, Aligned carbon nanotube, chemical vapor deposition growth

References(17)

1

Jorio, A.; Dresselhaus, M. S.; Dresselhaus, G. Carbon Nanotubes; Springer: New York, 2008.

DOI
2

O'Connell, M. J. Carbon Nanotubes: Properties and Applications; CRC Press: Boca Raton, 2006.

3

Ahn, J. -H.; Kim, H. -S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y.; Nuzzo, R. G.; Rogers, J. A. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials. Science 2006, 314, 1754–1757.

4
Dondero, W.; Gorga, R. E. Carbon nanotubes. In Handbook of Nanoscience, Engineering, and Technology, 2nd ed.; Goddard, W. A.; Brenner, D. W.; Lyshevski, S. E.; Iafrate, G. J., Eds; CRC Press: Boca Raton, 2007, pp. 21/27–21/37.
5

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nature Nanotech. 2007, 2, 230–236.

6

Ago, H.; Nakamura, K.; Ikeda K. -I.; Uehara, N.; Ishigami, N.; Tsuji, M.; Aligned growth of isolated single-walled carbon nanotubes programmed by atomic arrangement of substrate surface. Chem. Phys. Lett. 2005, 408, 433–438.

7

Ismach, A.; Kantorovich, D.; Joselevich, E. Carbon nanotube graphoepitaxy: Highly oriented growth by faceted nanosteps. J. Am. Chem. Soc. 2005, 127, 11554–11555.

8

Kocabas, C.; Hur, S. -H.; Gaur, A.; Meitl, M. A.; Shim M.; Rogers, J. A. Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. Small 2005, 1, 1110–1116.

9

Ding, L.; Yuan, D.; Liu J. Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. J. Am. Chem. Soc. 2008, 130, 5428–5429.

10

Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910–915.

11

Park J. -Y. Carbon nanotube field-effect transistor with a carbon nanotube gate electrode. Nanotechnology 2007, 18, 095202.

12

Geblinger, N.; Ismach, A.; Joselevich, E. Self-organized nanotube serpentines. Nature Nanotech. 2008, 3, 195–200.

13

Kocabas, C.; Kang, S. J.; Ozel, T.; Shim, M.; Rogers, J. A. Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors. J. Phys. Chem. C 2007, 111, 17879–17886.

14

Müller, A.; Das, S. K.; Kögerler, P.; Bögge, H.; Schmidtmann, M.; Trautwein, A. X.; Schunemann, V.; Krickemeyer, E.; Preetz, W. A new type of supramolecular compound: Molybdenum-oxide-based composites consisting of magnetic nanocapsules with encapsulated Keggin-ion electron reservoirs cross-linked to a two-dimensional network. Angew. Chem., Int. Ed. Engl. 2000, 39, 3414–3417.

DOI
15

An, L.; Owens, J. M.; McNeil, L. E.; Liu, J. Synthesis of nearly uniform single-walled carbon nanotubes using identical metal-containing molecular nanoclusters as catalysts. J. Am. Chem. Soc. 2002, 124, 13688–13689.

16

Keshavarzi, A.; Raychowdhury, A.; Kurtin, J.; Roy, K.; De, V. Carbon nanotube field-effect transistors for high-performance digital circuits–transient analysis, parasitics, and scalability. IEEE Trans. Electron Devices 2006, 53, 2718–2726.

17

Lee, J. S.; Ryu, S.; Yoo, K.; Choi, I. S.; Yun, W. S.; Kim, J. Origin of gate hysteresis in carbon nanotube field-effect transistors. J. Phys. Chem. C 2007, 111, 12504–12507.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 29 August 2008
Revised: 25 September 2008
Accepted: 25 September 2008
Published: 01 October 2008
Issue date: October 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work is supported by the Nanoscale Science and Engineering Initiative of the National Science Foundation under NSF Award Number CHE-0117752 and by the New York State Office of Science, Technology, and Academic Research (NYSTAR).

Rights and permissions

This article is published with open access at Springerlink.com

Return