Journal Home > Volume 1 , Issue 5

Nearly monodisperse spherical amorphous Se colloids are prepared by the dismutation of Na2SeSO3 solution at room temperature; by altering the pH of the solution, amorphous Se colloid spheres with sizes of about 120 nm, 200 nm, 300 nm, and 1 μm can be obtained. Se@Ag2Se core/shell spheres are successfully synthesized by using the obtained amorphous Se (a-Se) spheres as templates, indicating the potential applications of these Se nanomaterials in serving as soft templates for other selenides. Meanwhile, selenium nanowires are obtained through a "solid-solution-solid" growth process by dispersing the prepared Se spheres in ethanol. This simple and environmentally benign approach may offer more opportunities in the synthesis and applications of nanocrystal materials.


menu
Abstract
Full text
Outline
About this article

Preparation of Monodisperse Se Colloid Spheres and Se Nanowires Using Na2SeSO3 as Precursor

Show Author's information Liping LiuQing PengYadong Li( )
Department of ChemistryTsinghua UniversityBeijing 100084China

Abstract

Nearly monodisperse spherical amorphous Se colloids are prepared by the dismutation of Na2SeSO3 solution at room temperature; by altering the pH of the solution, amorphous Se colloid spheres with sizes of about 120 nm, 200 nm, 300 nm, and 1 μm can be obtained. Se@Ag2Se core/shell spheres are successfully synthesized by using the obtained amorphous Se (a-Se) spheres as templates, indicating the potential applications of these Se nanomaterials in serving as soft templates for other selenides. Meanwhile, selenium nanowires are obtained through a "solid-solution-solid" growth process by dispersing the prepared Se spheres in ethanol. This simple and environmentally benign approach may offer more opportunities in the synthesis and applications of nanocrystal materials.

Keywords: Na2SeSO3, dismutation, amorphous Se (a-Se) spheres, trigonal Se (t-Se) nanowires

References(34)

1

Zingaro, R. A.; Cooper W. C. Selenium. Van Nostrand-Reinhold: New York, 1974.

2

Lide, D. V. Handbook of Chemistry and Physics, 83rd ed.; CRC Press: Cleveland, 2002.

3

Berger, L. I. Semiconductor Materials; CRC Press: Boca Raton, FL, 1997, p. 86.

4

Nagels, P.; Sleeckx, E.; Callaerts, R.; Marquez, E.; Gonzalez, J. M.; Bernal-Oliva, A. M. Optical properties of amorphous Se films prepared by PECVD. Solid State Commun. 1997, 102, 539–541.

5

Innami, T.; Miyazaki, T.; Adachi, A. Optical constants of amorphous Se. J. Appl. Phys. 1999, 86, 1382–1387.

6

Gates, B.; Wu, Y. Y.; Yin, Y. D.; Yang, P. D.; Xia, Y. N. Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se. J. Am. Chem. Soc. 2001, 123, 11500–11501.

7

Jiang, X. C.; Mayers, B.; Herricks, T.; Xia, Y. N. Direct synthesis of Se@CdSe nanocables and CdSe nanotubes by reacting cadmium salts with Se nanowires. Adv. Mater. 2003, 15, 1740–1743.

8

Gates, B.; Mayers, B.; Cattle, B.; Xia, Y. N. Synthesis and characterization of uniform nanowires of trigonal selenium. Adv. Funct. Mater. 2002, 12, 219–227.

DOI
9

Mayers, B. T.; Liu, K.; Sunderland, D.; Xia, Y. N. Sonochemical synthesis of trigonal selenium nanowires. Chem. Mater. 2003, 15, 3852–3858.

10

Guatam, U. K.; Nath, M.; Rao, C. N. R. New strategies for the synthesis of t-selenium nanorods and nanowires. J. Mater. Chem. 2003, 13, 2845–2847.

11

Guatam, U. K.; Gundiah, G.; Kulkarni, G. U. Scanning tunneling microscopy and spectroscopy of Se and Te nanorods. Solid State Commun. 2005, 136, 169–172.

12

Zhang, J.; Zhang, S. Y.; Chen, H. Y. CTAB-controlled synthesis of one-dimensional selenium nanostructures. Chem. Lett. 2004, 33, 1054–1055.

13

Liu, X. Y.; Mo, M. S.; Zeng, J. H.; Qian, Y. T. Large-scale synthesis of ultra-long wire-like single-crystal selenium arrays. J. Cryst. Growth 2003, 259, 144–148.

14

Smith, T. W.; Cheatham, R. A. Functional polymers in the generation of colloidal dispersions of amorphous selenium. Macromolecules 1980, 13, 1203–1207.

15

Zhang, J. S.; Gao, X. V.; Zhang, L. D.; Bao, Y. P. Biological effects of a nano red elemental selenium. Biofactors 2001, 15, 27–38.

16

Gao, X. Y.; Gao, T.; Zhang, L. D. Solution-solid growth of α-monoclinic selenium nanowires at room temperature. J. Mater. Chem. 2003, 13, 6–8.

17

Mees, D. R.; Pysto, W.; Tarcha, P. J. J. Formation of selenium colloids using ascorbate as the reducing agent. Colloid Interface Sci. 1995, 170, 254–260.

18

Lin, Z. H.; Wang, C. R. C. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys. 2005, 92, 591–594.

19

Zhu, Y. J.; Qian, Y. T.; Huang, H.; Zhang, M. W. Preparation of nanometer-size selenium powders of uniform particle size by γ-irradiation. Mater. Lett. 1996, 28, 119–122.

20

Jeong, U.; Xia, Y. N. Synthesis and crystallization of monodisperse spherical colloids of amorphous selenium. Adv. Mater. 2005, 17, 102–106.

21

Song, J. M.; Zhu, J. H.; Yu, S. H. Crystallization and shape evolution of single crystalline selenium nanorods at liquid-liquid interface: From monodisperse amorphous Se nanospheres toward Se nanorods. J. Phys. Chem. B 2006, 110, 23790–23795.

22

Lucovsky, G.; Mooradian, A.; Taylor, W.; Wright, G. B.; Keezer, R. C. Identification of fundamental vibrational modes of trigonal α-monoclinic and amorphous selenium. Solid State Commun. 1967, 5, 113–117.

23

Jeong, U.; Xia, Y. N. Photonic crystals with thermally switchable stop bands fabricated from Se@Ag2Se spherical colloids. Angew. Chem. Int. Ed. 2005, 44, 3099–3103.

24

Camargo, P. H. C.; Lee, Y. H.; Jeong, U.; Zou, Z. Q.; Xia, Y. N. Cation exchange: A simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 2007, 23, 2985–2992.

25

Peng, Q.; Xu, S.; Zhuang, Z. B.; Wang, X.; Li, Y. D. A general chemical conversion method to various semiconductor hollow structures. Small 2005, 1, 216–221.

26

Gates, B.; Yin, Y. D.; Xia, Y. N. A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10–30 nm. J. Am. Chem. Soc. 2000, 122, 12582–12583.

27

Gates, B.; Mayers, B.; Grossman, A.; Xia, Y. N. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports. Adv. Mater. 2002, 14, 1749–1752.

DOI
28

Li, Q.; Yam, V. W. W. High-yield synthesis of selenium nanowires in water at room temperature. Chem. Commun. 2006, 9, 1006–1008.

29

Xie, Q.; Dai, Z.; Huang, W. W.; Zhang, W.; Ma, D. K.; Hu, X. K.; Qian, Y. T. Large-scale synthesis and growth mechanism of single-crystal Se nanobelts. Cryst. Growth Des. 2006, 6, 1514–1517.

30

Li, X. M.; Li, Y.; Li, S. Q.; Zhou, W. W.; Chu, H. B.; Chen, W.; Li, I. L.; Tang, Z. K. Single crystalline trigonal selenium nanotubes and nanowires synthesized by sonochemical process. Cryst. Growth Des. 2005, 5, 911–916.

31

Abdelouas, A.; Gong, W. L.; Lutze, W.; Shelnutt, J. A.; Franco R.; Moura, I. Using cytochrome c3 to make selenium nanowires. Chem. Mater. 2000, 12, 1510–1512.

32

Cheng, B.; Samulski, E. T. Rapid, high yield, solution-mediated transformation of polycrystalline selenium powder into single-crystal nanowires. Chem. Commun. 2003, 16, 2024–2025.

33

Lu, J.; Xie, Y.; Xu, F.; Zhu, L. Y. Study of the dissolution behavior of selenium and tellurium in different solvents—A novel route to Se, Te tubular bulksingle crystals. J. Mater. Chem. 2002, 12, 2755–2761.

34

Lee. E. P.; Xia. Y. Growth and patterning of Pt nanowires on silicon substrates. Nano Res. 2008, 1, 129–137.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 03 September 2008
Revised: 19 September 2008
Accepted: 19 September 2008
Published: 01 October 2008
Issue date: October 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work was supported by NSFC (90606006), the State Key Project of Fundamental Research for Nanoscience and Nanotechnology (2006CB932300) and the Key Grant Project of Chinese Ministry of Education. (NO.306020).

Rights and permissions

This article is published with open access at Springerlink.com

Return