Journal Home > Volume 1 , Issue 4

One-dimensional magnetic Ni–Co alloy microwires with different microstructures and differently shaped building blocks including spherical particles, multilayer stacked alloy plates, and alloy flowers, have been synthesized by an external magnetic field-assisted solvothermal reaction of mixtures of cobalt(Ⅱ) chloride and nickel(Ⅱ) chloride in 1, 2-propanediol with different NaOH concentrations. By adjusting the experimental parameters, such as precursor concentration and Ni/Co ratio, Ni–Co alloy chains with uniform diameters in the range 500 nm to 1.3 μm and lengths ranging from several micrometers to hundreds of micrometers can be obtained. A mechanism of formation of the one-dimensional assemblies of magnetic Ni–Co microparticles in a weak external magnetic field is proposed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magnetic Field-Induced Solvothermal Synthesis of One-Dimensional Assemblies of Ni–Co Alloy Microstructures

Show Author's information Ming Jun HuBin LinShu Hong Yu( )
Division of Nanomaterials & ChemistryHefei National Laboratory for Physical Sciences at MicroscaleSchool of Chemistry and MaterialsUniversity of Science and Technology of ChinaHefei230026China

Abstract

One-dimensional magnetic Ni–Co alloy microwires with different microstructures and differently shaped building blocks including spherical particles, multilayer stacked alloy plates, and alloy flowers, have been synthesized by an external magnetic field-assisted solvothermal reaction of mixtures of cobalt(Ⅱ) chloride and nickel(Ⅱ) chloride in 1, 2-propanediol with different NaOH concentrations. By adjusting the experimental parameters, such as precursor concentration and Ni/Co ratio, Ni–Co alloy chains with uniform diameters in the range 500 nm to 1.3 μm and lengths ranging from several micrometers to hundreds of micrometers can be obtained. A mechanism of formation of the one-dimensional assemblies of magnetic Ni–Co microparticles in a weak external magnetic field is proposed.

Keywords: solvothermal synthesis, Ni–Co alloy microstructures, magnetic field-induced assembly

References(44)

1

Link, S.; El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366.

2

Lu, A. -H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46, 1222–1244.

3

Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998, 391, 775–778.

4

Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

5

Toshima, N.; Yonezawa, T. Bimetallic nanoparticles–novel materials for chemical and physical applications. New J. Chem. 1998, 22, 1179–1201.

6

Luo, X. L.; Morrin, A.; Killard, A. J.; Smyth, M. R. Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 2006, 18, 319–326.

7

Gu, C.; Lian, J.; Jiang, Z. High strength nanocrystalline Ni–Co alloy with enhanced tensile ductility. Adv. Eng. Mater. 2006, 8, 252–256.

8

Wang, L.; Gao, Y.; Xue, Q.; Liu, H.; Xu, T. Microstructure and tribological properties of electrodeposited Ni–Co alloy deposits. Appl. Surf. Sci. 2005, 242, 326–332.

9

Kritzer, P.; Boukis, N.; Dinjus, E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures. Corrosion 2000, 56, 1093–1104.

10

Singh, V. B.; Singh, V. N. Electrodeposition of nickel–cobalt alloys from acetate bath. Plat. Surf. Finish. 1976, 63, 34–36.

11

Hibbard, G. D.; Aust, K. T.; Erb, U. Thermal stability of electrodeposited nanocrystalline Ni–Co alloys. Mat. Sci. Eng. A 2006, 433, 195–202.

12

Domínguez-Crespo, M. A.; Plata-Torres, M.; Torres-Huerta, A. M.; Arce-Estrada, E. M.; Hallen-López, J. M. Kinetic study of hydrogen evolution reaction on Ni30Mo70, Co30Mo70, Co30Ni70 and Co10Ni20Mo70 alloy electrodes. Mater. Charact. 2005, 55, 83–91.

13

Chi, B.; Li, J.; Yang, X.; Gong, Y.; Wang, N. Deposition of Ni–Co by cyclic voltammetry method and its electrocatalytic properties for oxygen evolution reaction. Int. J. Hydrogen. Energ. 2005, 30, 29–34.

14

Mercier, D.; Lévy, J. -C. S.; Viau, G.; Fiévet-Vincent, F.; Fiévet, F. Magnetic resonance in spherical Co–Ni and Fe–Co–Ni particles. Phys. Rev. B 2000, 62, 532–544.

15

Masoeroa, A.; Mortenb, B.; Olcesec, G. L.; Prudenziatib, M.; Tangod, F.; Vinai, F. Magnetic properties of Ni–Co thick-film magnetoresistors. Thin Solid Films 1999, 350, 214–218.

16

Atkinson, A.; Barnett, S.; Gorte, R. J.; Irvine, J. T. S.; McEvoy, A. J.; Mogensen, M.; Singhal, S. C.; Vohs, J. Advanced anodes for high-temperature fuel cells. Nat. Mater. 2004, 3, 17–27.

17

Zhang, L.; Bain, J. A.; Zhu, J. -G.; Abelmann, L.; Onoue, T. Dynamic domain motion of thermal-magnetically formed marks on CoNi/Pt multilayers. J. Appl. Phys. 2006, 100, 053901.

18

Onoue, T.; Siekman, M. H.; Abelmann, L. Heat-assisted magnetic probe recording on a CoNi/Pt multilayered film. J. Magn. Magn. Mater. 2005, 287, 501–506.

19

Golodnitsky, D.; Rosenberg, Y.; Ulus, A. The role of anion additives in the electrodeposition of nickel–cobalt alloys from sulfamate electrolyte. Electrochim. Acta 2002, 47, 2707–2714.

20

Armyanov, S. Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys. Electrochim. Acta 2000, 45, 3323–3335.

21

Aymard, L.; Dumont, B.; Viau, G. Production of Co–Ni alloys by mechanical-alloying. J. Alloy. Compd. 1996, 242, 108–113.

22

Uzawa, M.; Inoue, A.; Masumoto, T. Morphology and properties of ultrafine Ni–Fe and Ni–Co alloy particles prepared by leaching amorphous Al–Ni–Fe–Ce and Al–Ni–Co–Ce alloys. Mater. Sci. Eng. A 1994, 182, 1179–1183.

23

Sangregorio, C.; Fernández, C. de J.; Battaglin, G.; De, G.; Gatteschi, D.; Mattei, G.; Mazzoldi, P. Magnetic properties of Co–Ni alloy nanoparticles prepared by the sol–gel technique. J. Magn. Magn. Mater. 2004, 272, E1251–E1252.

24

Syukri; Ban, T.; Ohya, Y.; Takahashi, Y. A simple synthesis of metallic Ni and Ni–Co alloy fine powders from a mixed-metal acetate precursor. Mater. Chem. Phys. 2003, 78, 645–649.

25

Ung, D.; Viau, G.; Ricolleau, C.; Warmont, F.; Gredin, P.; Fiévet, F. CoNi nanowires synthesized by heterogeneous nucleation in liquid polyol. Adv. Mater. 2005, 17, 338–344.

26

Ung, D.; Soumare, Y.; Chakroune, N.; Viau, G.; Vaulay, M. -J.; Richard, V. Growth of magnetic nanowires and nanodumbbells in liquid polyol. Chem. Mater. 2007, 19, 2084–2094.

27

Li, Y. D.; Li, L. Q.; Liao, H. W.; Wang, H. R. Preparation of pure nickel, cobalt, nickel–cobalt and nickel–copper alloys by hydrothermal reduction. J. Mater. Chem. 1999, 9, 2675–2677.

28

Zhu, L. -P.; Xiao, H. -M.; Fu, S. -Y. Surfactant-assisted synthesis and characterization of novel chain-like CoNi alloy assemblies. Eur. J. Inorg. Chem. 2007, 3947–3951.

29

Qin, D. H.; Wang, C. W.; Sun, Q. Y.; Li, H. L. The effects of annealing on the structure and magnetic properties of CoNi patterned nanowire arrays. Appl. Phys. A 2002, 74, 761–765.

30

Zhang, D. -E.; Ni, X. -M.; Zhang, X. -J.; Zheng, H. -G. Synthesis and characterization of Ni–Co needle-like alloys in water-in-oil microemulsion. J. Magn. Magn. Mater. 2006, 302, 290–293.

31

Niu, H. L.; Chen, Q. W.; Ning, M.; Jia, Y. S.; Wang, X. J. Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B 2004, 108, 3996–3999.

32

Sun, L.; Chen, Q.; Tang, Y.; Xiong, Y. Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. Chem. Commun. 2007, 2844–2846.

33

Wang, J.; Chen, Q. W.; Zeng, C.; Hou, B. Y. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires. Adv. Mater. 2004, 16, 137–140.

34

He, Z.; Yu, S. -H.; Zhou, X.; Li, X.; Qu, J. Magnetic-field-induced phase-selective synthesis of ferrosulfide microrods by a hydrothermal process: Microstructure control and magnetic properties. Adv. Funct. Mater. 2006, 16, 1105–1111.

35

Zeng, J.; Huang, J.; Lu, W.; Wang, X.; Wang, B.; Zhang, S.; Hou, J. Necklace-like noble-metal hollow nanoparticle chains: Synthesis and tunable optical properties. Adv. Mater. 2007, 19, 2172–2176.

36

Sun, J.; Zhang, Y.; Chen, Z.; Zhou, J.; Gu, N. Fibrous aggregation of magnetite nanoparticles induced by a time-varied magnetic field. Angew. Chem. Int. Ed. 2007, 46, 4767–4770.

37

Commeinhes, X.; Davidson, P.; Bourgaux, C.; Livage, J. Orientation of liquid-crystalline suspensions of vanadium pentoxide ribbons by a magnetic field. Adv. Mater. 1997, 9, 900–903.

38

Kimura, T.; Sato, Y.; Kimura, F.; Iwasaka, M.; Ueno, S. Micropatterning of cells using modulated magnetic fields. Langmuir 2005, 21, 830–832.

39

Garmestani, H.; Al-Haik, M. S.; Dahmen, K.; Tannenbaum, R.; Li, D.; Sablin, S. S.; Hussaini, M. Y. Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv. Mater. 2003, 15, 1918–1921.

40

Kimura, T.; Yamato, M.; Nara., A. Particle trapping and undulation of a liquid surxface using a microscopically modulated magnetic field. Langmuir 2004, 20, 572–574.

41

Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin, B.; Zhang, M.; Yu, S. H. High yield synthesis of bracelet-like hydrophilic Ni–Co magnetic alloy flux-closure nanorings. J. Am. Chem. Soc. 2008, 130, 11606–11607.

42

Mattei, G.; de Julian Fernández, C.; Mazzoldi, P.; Sada, C. Synthesis, structure, and magnetic properties of Co, Ni, and Co–Ni alloy nanocluster-doped SiO2 films by sol-gel processing. Chem. Mater. 2002, 14, 3440–3447.

43

Henglein, A.; Giersig, M. Radiolytic formation of colloidal tin and tin–gold particles in aqueous solution. J. Phys. Chem. 1994, 98, 6931–6935.

44
Jiang, H.; Moon, K. -S.; Wong, C. P. Synthesis of Ag–Cu alloy nanoparticles for lead-free interconnect materials. Proceedings of the 2005 IEEE/CPMT 10th International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Beckman Center, Irvine, CA, March, 2005(CD-ROM only); ISBN 0-7803-9085-7.
File
nr-1-4-303_ESM.pdf (511.4 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 31 July 2008
Accepted: 25 August 2008
Published: 01 October 2008
Issue date: August 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grants Nos. 50732006, 20621061, and 20671085), Anhui Development Fund for Talented Personnel (2005CB623601) and Anhui Education Committee (2006Z027, ZD2007004-1), the Specialized Research Fund for the Doctoral Program (SRFDP) of Higher Education State Education Ministry, and the Partner-Group of the Chinese Academy of Sciences-the Max Planck Society.

Rights and permissions

This article is published with open access at Springerlink.com

Return