Journal Home > Volume 1 , Issue 3

We report the synthesis of porous LiFePO4/NiP composite nanospheres and their application in rechargeable lithium-ion batteries. A simple one-step spraying technique was developed to prepare LiFePO4/NiP composite nanospheres with an electrical conductivity 103–104 times that of bulk particles of LiFePO4. Electrochemical measurements show that LiFePO4 nanospheres with a uniform loading of 0.86 wt%–1.50 wt% NiP exhibit high discharge capacity, good cycling reversibility, and low apparent activation energies. The superior electrode performance of the as-prepared composite nanospheres results from the greatly enhanced electrical conductivity and porous structure of the materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Porous LiFePO4/NiP Composite Nanospheres as the Cathode Materials in Rechargeable Lithium-Ion Batteries

Show Author's information Chunsheng LiShaoyan ZhangFangyi ChengWeiqiang JiJun Chen( )
nstitute of New Energy Material Chemistry, Key Laboratory of Energy Material Chemistry (Tianjin) and Engineering Research Center of High-Energy Storage and Conversion (Ministry of Education) Nankai UniversityTianjin 300071 China

Abstract

We report the synthesis of porous LiFePO4/NiP composite nanospheres and their application in rechargeable lithium-ion batteries. A simple one-step spraying technique was developed to prepare LiFePO4/NiP composite nanospheres with an electrical conductivity 103–104 times that of bulk particles of LiFePO4. Electrochemical measurements show that LiFePO4 nanospheres with a uniform loading of 0.86 wt%–1.50 wt% NiP exhibit high discharge capacity, good cycling reversibility, and low apparent activation energies. The superior electrode performance of the as-prepared composite nanospheres results from the greatly enhanced electrical conductivity and porous structure of the materials.

Keywords: electrical conductivity, spraying, Nanospheres, LiFePO4/NiP, rechargeable lithium-ion batteries

References(28)

1

Tombler, T. W.; Zhou, C. W.; Alexseyev, L.; Kong, J.; Dai, H. J.; Lei, L.; Jayanthi, C. S.; Tang, M. J.; Wu, S. Y. Reversible electromechanical characteristics of carbon nanotubes under local-probe manipulation. Nature 2000, 405, 769–772.

2

Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 2005, 4, 455–459.

3

Wang, Z. L. Energy harvesting for self-powered nanosystems. Nano Res. 2008, 1, 1–8.

4

Liu, J. F.; Chen, W.; Liu, X. W.; Zhou, K. B.; Li, Y. D. Au/LaVO4 Nanocomposite: Preparation, characterization, and catalytic activity for CO oxidation. Nano Res. 2008, 1, 46–55.

5

Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613.

6

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

7

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

8

Yamada, A.; Koizumi, H.; Nishimura, S. I.; Sonoyama, N.; Kanno, R.; Yonemura, M.; Nakamura, T.; Kobayashi, Y. Room-temperature miscibility gap in LixFePO4. Nat. Mater. 2006, 5, 357–360.

9

Whittingham, M. S. Materials challenges facing electrical energy storage. MRS Bull. 2008, 33, 411–419.

10

Chen, Z. H.; Dahn, J. R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. J. Electrochem. Soc. 2002, 149, A1184–A1189.

11

Huang, H.; Yin, S. C.; Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochem. Solid-State Lett. 2001, 4, A170–A172.

12

Takeuchi, T.; Tabuchi, M.; Nakashima, A.; Nakamura, T.; Miwa, Y.; Kageyama, H.; Tatsumi, K. Preparation of dense LiFePO4/C composite positive electrodes using spark-plasma-sintering process. J. Power Sources 2005, 146, 575–579.

13

Xie, H. M.; Wang, R. S.; Ying, J. R.; Zhang, L. Y.; Jalbout, A. F.; Yu, H. Y.; Yang, G. L.; Pan, X. M.; Su, Z. M. Optimized LiFePO4–polyacene cathode material for lithium-ion batteries. Adv. Mater. 2006, 18, 2609–2613.

14

Prosini, P. P.; Carewska, M.; Scaccia, S.; Wisniewski, P.; Pasquali, M. Long-term cyclability of nanostructured LiFePO4. Electrochim. Acta 2003, 48, 4205–4211.

15

Chung, S. Y.; Bloking, J. T.; Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 2002, 1, 123–128.

16

Herle, P. S.; Ellis, B.; Coombs, N.; Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat. Mater. 2004, 3, 147–152.

17

Nakamura, T.; Miwa, Y.; Tabuchi, M.; Yamada, Y. Structural and surface modifications of LiFePO4 olivine particles and their electrochemical properties. J. Electrochem. Soc. 2006, 153, A1108–A1114.

18

Gabrisch, H.; Wilcox, J. D.; Doeff, M. M. Carbon surface layers on a high-rate LiFePO4. Electrochem. Solid-State Lett. 2006, 9, A360–A363.

19

Lee, J.; Teja, A. S. Synthesis of LiFePO4 micro and nanoparticles in supercritical water. Mater. Lett. 2006, 60, 2105–2109.

20

Ng, S. H.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angew. Chem. Int. Ed. 2006, 45, 6896–6899.

21
Cheng, F. Y.; Zhang, S. Y.; Tao, Z. T.; Liang, J.; Chen, J. LiFePO4/NiP composite microspheres as the cathode materials of rechargeable lithium-ion batteries. In IMLB 2008 Abstract 395; The 14th Int. Meeting on Lithium Batteries Tianjin, China, June 22–28, 2008.
22

Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582–286.

23

Yamada, A.; Chung, S. C.; Hinokuma, K. Optimized LiFePO4 for lithium battery cathodes. J. Electrochem. Soc. 2001, 148, A224–A229.

24

Izumi, F.; Ikeda, T. A Rietveld analysis program RIETAN-98 and its applications to zeolites. Mater. Sci. Forum 2000, 321–324, 198–203.

25

Li, W. Y.; Li, C. S.; Zhou, C. Y.; Ma, H.; Chen, J. Metallic magnesium nano/mesoscale structures: Their shape-controlled preparation and Mg/Air battery applications. Angew. Chem. Int. Ed. 2006, 45, 6009–6012.

26

Ma, H.; Cheng, F. Y.; Chen, J.; Zhao, J. Z.; Li, C. S.; Tao, Z. L.; Liang, J. Nest-like silicon nanospheres for high-capacity lithium storage. Adv. Mater. 2007, 19, 4067–4070.

27

Ma, H.; Zhang, S. Y.; Ji, W. Q.; Tao, Z. L.; Chen, J. Alpha-CuV2O6 nanowires: Hydrothermal synthesis and primary lithium battery application. J. Am. Chem. Soc. 2008, 130, 5361–5367.

28

Ma, H.; Li, C. S.; Su, Y.; Chen, J. Studies on the vapour-transport synthesis and electrochemical properties of zinc micro-, meso- and nanoscale structures. J. Mater. Chem. 2007, 17, 684–691.

File
nr-1-3-242_ESM.pdf (233 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 05 May 2008
Revised: 31 July 2008
Accepted: 31 July 2008
Published: 01 March 2008
Issue date: March 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

This work was supported by the National Key Basic Research Program (2005CB623607), National Natrual Science Foundation of China (20703026) and Tianjin Basic & High-Tech Programs (07ZCGHHZ00700 and 08JCZDJC21300).

Rights and permissions

This article is published with open access at Springerlink.com

Return