AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (574.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Bacteriophage M13 as a Scaffold for Preparing Conductive Polymeric Composite Fibers

Zhongwei Niu1Michael A. Bruckman1Brandon Harp1Charlene M. Mello2( )Qian Wang1
Department of Chemistry and Biochemistry and Nanocenter University of South CarolinaColumbiaSC 29208 USA
Bioscience and Technology Team, US Army Natick Soldier Research Development & Engineering CenterNatickMA 01760-5020 USA
Show Author Information

Graphical Abstract

Abstract

Using biological templates to build one-dimensional functional materials holds great promise in developing nanosized electrical devices, sensors, catalysts, and energy storage units. In this communication, we report a versatile assembly process for the preparation of water-soluble conductive polyaniline (PANi)/M13 composite nanowires by employing the bacteriophage M13 as a template. The surface lysine residues of M13 can be derivatized with carboxylic groups to improve its binding ability to the aniline; the resulting modified M13 is denoted as m-M13. Highly negatively-charged poly(sulfonated styrene) was used both as a dopant acid and a stabilizing agent to enhance the stability of the composite fibers in aqueous solution. A transparent solution of the conductive PANi/m-M13 composite fibers can be readily obtained without any further purification step. The fibers can be easily fabricated into thin conductive films due to their high aspect ratio and good solubility in aqueous solution. This synthesis discloses a unique and versatile way of using bionanorods to produce composite fibrillar materials with narrow dispersity, high aspect ratio, and high processibility, which may have many potential applications in electronics, optics, sensing, and biomedical engineering.

References

1

Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

2

Yang, C.; Zhong, Z. H.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304–1307.

3

Hopkins, D. S.; Pekker, D.; Goldbart, P. M.; Bezryadin, A. Quantum interference device made by DNA templating of superconducting nanowires. Science 2005, 308, 1762–1765.

4

Ferry, D. K. Materials science: Nanowires in nano-electronics. Science 2008, 319, 579–580.

5

Ellis-Behnke, R. G.; Liang, Y. X.; You, S. W.; Tay, D. K. C.; Zhang, S. G.; So, K. F.; Schneider, G. E. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5054–5059.

6

Mershin, A.; Cook, B.; Kaiser, L.; Zhang, S. G. A classic assembly of nanobiomaterials. Nat. Biotechnol. 2005, 23, 1379–1380.

7

Sargeant, T. D.; Guler, M. O.; Oppenheimer, S. M.; Mata, A.; Satcher, R. L.; Dunand, D. C.; Stupp, S. I. Hybrid bone implants: Self-assembly of peptide amphiphile nanofibers within porous titanium. Biomaterials 2008, 29, 161–171.

8

Jiang, H. Z.; Guler, M. O.; Stupp, S. I. The internal structure of self-assembled peptide amphiphiles nanofibers. Soft Matter. 2007, 3, 454–462.

9

Fonoberov, V. A.; Balandin, A. A. Low-frequency vibrational modes of viruses used for nanoelectronic self-assemblies. Phys. Status Solidi B 2004, 241, R67–R69.

10

Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885–888.

11

Mao, C. B.; Solis, D. J.; Reiss, B. D.; Kottmann, S. T.; Sweeney, R. Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A. M. Virus-based genetic toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science 2004, 303, 213–217.

12

Lee, S. W.; Mao, C. B.; Flynn, C. E.; Belcher, A. M. Ordering of quantum dots using genetically engineered viruses. Science 2002, 296, 892–895.

13

Niu, Z. W.; Bruckman, M.; Kotakadi, V. S.; He, J.; Emrick, T.; Russell, T. P.; Yang, L.; Wang, Q. Study and characterization of tobacco mosaic virus head-to-tail assembly assisted by aniline polymerization. Chem. Commun. 2006, 3019–3021.

14

Niu, Z. W.; Bruckman, M. A.; Li, S. Q.; Lee, L. A.; Lee, B.; Pingali, S. V.; Thiyagarajan, P.; Wang, Q. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization. Langmuir 2007, 23, 6719–6724.

15

Tseng, R. J.; Baker, C. O.; Shedd, B.; Huang, J. X.; Kaner, R. B.; Ouyang, J. Y.; Yang, Y. Charge transfer effect in the polyaniline-gold nanoparticle memory system. Appl. Phys. Lett. 2007, 90, 053101.

16

Fonoberov, V. A.; Balandin, A. A. Phonon confinement effects in hybrid virus-inorganic nanotubes for nanoelectronic applications. Nano Lett. 2005, 5, 1920–1923.

17

Royston, E.; Lee, S. Y.; Culver, J. N.; Harris, M. T. Characterization of silica-coated tobacco mosaic virus. J. Colloid Interface Sci. 2006, 298, 706–712.

18

Bruckman, M. A.; Kaur, G.; Lee, L. A.; Xie, F.; Sepulveda, J.; Breitenkamp, R.; Zhang, X. F.; Joralemon, M.; Russell, T. P.; Emrick, T.; Wang, Q. Surface modification of tobacco mosaic virus with "click" chemistry. Chembiochem. 2008, 9, 519–523.

19

Wang, Q.; Lin, T. W.; Tang, L.; Johnson, J. E.; Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem., Int. Ed. 2002, 41, 459–462.

20

Wang, Q.; Lin, T. W.; Johnson, J. E.; Finn, M. G. Natural supramolecular building blocks: Cysteine-added mutants of cowpea mosaic virus. Chem. Biol. 2002, 9, 813–819.

21

Wang, Q.; Chan, T. R.; Hilgraf, R.; Fokin, V. V.; Sharpless, K. B.; Finn, M. G. Bioconjugation by copper(Ⅰ)-catalyzed azide-alkyne [3+2] cycloaddition. J. Am. Chem. Soc. 2003, 125, 3192–3193.

22

Schlick, T. L.; Ding, Z. B.; Kovacs, E. W.; Francis, M. B. Dual-surface modification of the tobacco mosaic virus. J. Am. Chem. Soc. 2005, 127, 3718–3823.

23

Chiang, C. Y.; Mello, C. M.; Gu, J. J.; Silva, E. C. C. M.; van Vliet, K. J.; Belcher, A. M. Weaving genetically engineered functionality into mechanically robust virus fibers. Adv. Mater. 2007, 19, 826–832.

24

Rezai, T.; Bock, J. E.; Zhou, M. V.; Kalyanaraman, C.; Lokey, R. S.; Jacobson, M. P. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc. 2006, 128, 14073–14080.

25

MacDiarmid, A. G. Synthetic metals: A novel role for organic polymers. Syn. Met. 2001, 125, 11–22.

26

Huang, J. X.; Kaner, R. B. The intrinsic nanofibrillar morphology of polyaniline. Chem. Commun. 2006, 367–376.

27

Liu, W.; Cholli, A. L.; Nagarajan, R.; Kumar, J.; Tripathy, S.; Bruno, F. F.; Samuelson, L. The role of template in the enzymatic synthesis of conducting polyaniline. J. Am. Chem. Soc. 1999, 121, 11345–11355.

28

Liu, W.; Kumar, J.; Tripathy, S.; Senecal, K. J.; Samuelson, L. Enzymatically synthesized conducting polyaniline. J. Am. Chem. Soc. 1999, 121, 71–78.

29

Zhang, D. H.; Wang, Y. Y. Synthesis and applications of one-dimensional nano-structured polyaniline: An overview. Mater. Sci. Eng. B 2006, 134, 9–19.

30

Zhang, X.; Goux, W. J.; Manohar, S. K. Synthesis of polyaniline nanofibers by "nanofiber seeding". J. Am. Chem. Soc. 2004, 126, 4502–4503.

31

Chiou, N. R.; Epstein, A. J. Polyaniline nanofibers prepared by dilute polymerization. Adv. Mater. 2005, 17, 1679–1683.

32

Sun, X.; Hagner, M. Novel poly(acrylic acid)-mediated formation of composited, poly(3, 4-ethylenedioxythiophene)-based conducting polymer nanowires. Macromolecules 2007, 40, 8537–8539.

33

Tseng, R. J.; Huang, J. X.; Ouyang, J. Y.; Kaner, R. B.; Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 2005, 5, 1077–1080.

34

Huang, J. X.; Kaner, R. B. A general chemical route to polyaniline nanofibers. J. Am. Chem. Soc. 2004, 126, 851–855.

35

Lee, S. W.; Belcher, A. M. Virus-based fabrication of micro- and nanofibers using electrospinning. Nano Lett. 2004, 4, 387–390.

36

Niu, Z.; Liu, J.; Lee, L. A.; Bruckman, M. A.; Zhao, D.; Koley, G.; Wang, Q. Biological templated synthesis of water-soluble conductive polymeric nanowires. Nano Lett. 2007, 7, 3729–3733.

37

Thiyagarajan, M.; Samuelson, L. A.; Kumar, J.; Cholli, A. L. Helical conformational specificity of enzymatically synthesized water-soluble conducting polyaniline nanocomposites. J. Am. Chem. Soc. 2003, 125, 11502–11503.

38

Yoo, P. J.; Nam, K. T.; Qi, J. F.; Lee, S. K.; Park, J.; Belcher, A. M.; Hammond, P. T. Spontaneous assembly of viruses on multilayered polymer surfaces. Nat. Mater. 2006, 5, 234–240.

39

Prasad, T.; Turner, M.; Falkner, J.; Mittlernan, D.; Johnson, J.; Lin, T. W.; Colvin, V. Nanostructured virus crystals for X-ray optics. IEEE T. Nanotechnol. 2006, 5, 93–96.

40

Lin, Y.; Su, Z.; Niu, Z.; Li, S.; Kaur, G.; Lee, L. A.; Wang, Q. Layer-by-layer assembly of viral capsid for cell adhesion. Acta Biomater. 2008, 4, 838–843.

41

Maguire, J. F.; McTague, J. P.; Rondelez, F. Rotational diffusion of sterically interacting rodlike macromolecules. Phys. Rev. Lett. 1980, 45, 1891–1894.

Nano Research
Pages 235-241
Cite this article:
Niu Z, Bruckman MA, Harp B, et al. Bacteriophage M13 as a Scaffold for Preparing Conductive Polymeric Composite Fibers. Nano Research, 2008, 1(3): 235-241. https://doi.org/10.1007/s12274-008-8027-2

822

Views

28

Downloads

46

Crossref

N/A

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 May 2008
Revised: 29 July 2008
Accepted: 30 July 2008
Published: 01 March 2008
© Tsinghua Press and Springer-Verlag 2008

This article is published with open access at Springerlink.com

Return