Journal Home > Volume 1 , Issue 3

Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at −45 ℃.


menu
Abstract
Full text
Outline
About this article

A Facile Synthesis of Monodisperse Au Nanoparticles and Their Catalysis ofCO Oxidation

Show Author's information Sheng Peng1Youngmin Lee1Chao Wang1Hongfeng Yin2Sheng Dai2Shouheng Sun1( )
Department of Chemistry Brown University, ProvidenceRhode Island 02912 USA
Chemical Sciences Division Oak Ridge National LaboratoryTennessee 37831 USA

Abstract

Monodisperse Au nanoparticles (NPs) have been synthesized at room temperature via a burst nucleation of Au upon injection of the reducing agent t-butylamine-borane complex into a 1, 2, 3, 4-tetrahydronaphthalene solution of HAuCl4·3H2O in the presence of oleylamine. The as-synthesized Au NPs show size-dependent surface plasmonic properties between 520 and 530 nm. They adopt an icosahedral shape and are polycrystalline with multiple-twinned structures. When deposited on a graphitized porous carbon support, the NPs are highly active for CO oxidation, showing 100% CO conversion at −45 ℃.

Keywords: catalysis, Nanoparticle synthesis, Au nanoparticles, CO oxidation

References(28)

1

Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal. 1989, 115, 301–309.

2

Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4. J. Catal. 1993, 144, 175–192.

3

Grunwaldt, J. D.; Kiener, C.; Wögerbauer, C.; Baiker, A. Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal. 1999, 181, 223–232.

4

Haruta, M. Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications. Gold Bull. 2004, 37, 27–36.

5

Carrettin, S.; Concepcion, P.; Corma, A.; Nieto, J. M. L.; Puntes, V. F. Nanocrystalline CeO2 increases the activity of Au for CO oxidation by two orders of magnitude. Angew. Chem. Int. Ed. 2004, 43, 2538–2540.

6

Kim, W. B.; Voitl, T.; Rodriguez-Rivera, G. J.; Dumesic, J. A. Powering fuel cells with CO via aqueous polyoxometalates and gold catalysts. Science 2004, 305, 1280–1283.

7

Zhu, H. G.; Liang, C. D.; Yan, W. F.; Overbury, S. H.; Dai, S. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B 2006, 110, 10842–10848.

8

Overbury, S. H.; Schwartz, V.; Mullim, D. R.; Yan, W. F.; Dai, S. Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO2. J. Catal. 2006, 241, 56–65.

9

Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Kiely, C. J.; Attard, G. A.; Hutchings, G. J. Oxidation of glycerol using supported gold catalysts. Top. Catal. 2004, 27, 131–136.

10

Zanella, R.; Louis, C.; Giorgio, S.; Touroude, R. J. Crotonaldehyde hydrogenation by gold supported on TiO2: Structure sensitivity and mechanism. J. Catal. 2004, 223, 328–339.

11

Milone, C.; Ingoglia, R.; Galvagno, S. Gold supported on iron oxy-hydroxides: A versatile tool for the synthesis of fine chemicals. Gold Bull. 2006, 39, 54–65.

12

Abad, A.; Corma, A.; Garcia, H. Supported gold nanoparticles for aerobic, solventless oxidation of allylic alcohols. Pure Appl. Chem. 2007, 79, 1847–1854.

13

Corma, A.; Concepcion, P.; Serna, P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts. Angew. Chem., Int. Ed. 2007, 46, 7266–7269.

14

Corma, A.; Serna, P.; Garcia, H. Gold catalysts open a new general chemoselective route to synthesize oximes by hydrogenation of alpha, beta-unsaturated nitrocompounds with H2. J. Am. Chem. Soc. 2007, 129, 6358–6359.

15

Daniel, M.C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

16

Fan, H. Y.; Yang, K.; Boye, D. M.; Sigmon, T.; Malloy, K. J.; Xu, H. F.; Lopez, G. P.; Brinker, C. J. Self-assembly of ordered, robust, three-dimensional gold nanocrystal/silica arrays. Science 2004, 304, 567–571.

17

Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Kinetically driven self assembly of highly ordered nanoparticle monolayers. Nat. Mater. 2006, 5, 265–270.

18

Tkachenko, A. G.; Xie, H.; Liu, Y. L.; Coleman, D.; Ryan, J.; Glomm, W. R.; Shipton, M. K.; Franzen, S.; Feldheim, D. L. Cellular trajectories of peptide-modified gold particle complexes: Comparison of nuclear localization signals and peptide transduction domains. Bioconjugate Chem. 2004, 15, 482–490.

19

Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; van Duyne, R. R.; Zou, S. L. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 2005, 30, 368–375.

20

Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547–1562.

21

Zheng, N.; Fan, J.; Stucky, J. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551.

22

Baletto, F.; Ferrando, R. Microscopic mechanisms of the growth of metastable silver icosahedra. Phys. Rev. B 2001, 63, 155408.

23

Baletto, F.; Ferrando, R.; Fortunelli, A.; Montalenti, F.; Mottet, C. Crossover among structural motifs in transition and noble-metal clusters. J. Chem. Phys. 2002, 116, 3856–3863.

24

Xiong, Y.; McLellan, J. M.; Yin, Y.; Xia, Y. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem., Int. Ed. 2007, 46, 790–794.

25

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

26

La Mer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

27

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

28

Ma, Z.; Liang, C. D.; Overbury, S. H.; Dai, S. Gold nanoparticles on electroless-deposition-derived MnOx/C: Synthesis, characterization, and catalytic CO oxidation. J. Catal. 2007, 252, 119–126.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 17 June 2008
Revised: 19 July 2008
Accepted: 24 July 2008
Published: 01 March 2008
Issue date: March 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

The work was supported by NSF/DMR 0606264 and a GAANN fellowship (Y. Lee). The authors thank Anthony W. McCormick for his help in acquiring HRTEM images of the Au NPs.

Rights and permissions

This article is published with open access at Springerlink.com

Return