Journal Home > Volume 1 , Issue 3

A very simple strategy for preparing hierarchical inorganic nanostructures under ambient aqueous conditions is presented. The hierarchical inorganic nanomaterials were obtained by simply adding a highly concentrated solution of one reactant to a solution of another reactant with low concentration. No surface-capping molecules or structure-directing templates were needed. The preparation of hierarchical single crystalline PbMoO4 was used as an example in order to study the effects of varying the reaction conditions and the mechanism of the process. It was found that the large concentration difference (typically in excess of 200-fold) and the concentration gradient of the reactants both play key roles in controlling the diffusion process and the morphology of the resulting nanostructures. This kinetically controlled strategy is facile and is easily adapted to prepare a variety of inorganic materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Inorganic Hierarchical Nanostructures Induced by Concentration Difference and Gradient

Show Author's information Haibin ChuXuemei LiGuangda ChenZhong JinYan ZhangYan Li( )
Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, National Laboratory of Rare Earth Material Chemistry and Application College of Chemistry and Molecular Engineering, Peking UniversityBeijing 100871 China

Abstract

A very simple strategy for preparing hierarchical inorganic nanostructures under ambient aqueous conditions is presented. The hierarchical inorganic nanomaterials were obtained by simply adding a highly concentrated solution of one reactant to a solution of another reactant with low concentration. No surface-capping molecules or structure-directing templates were needed. The preparation of hierarchical single crystalline PbMoO4 was used as an example in order to study the effects of varying the reaction conditions and the mechanism of the process. It was found that the large concentration difference (typically in excess of 200-fold) and the concentration gradient of the reactants both play key roles in controlling the diffusion process and the morphology of the resulting nanostructures. This kinetically controlled strategy is facile and is easily adapted to prepare a variety of inorganic materials.

Keywords: Crystal growth, nanostructures, hierarchical, kinetics

References(50)

1

Yan, H. Q.; He, R. R.; Johnson, J.; Law, M.; Saykally, R. J.; Yang, P. D. Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 2003, 125, 4728–4729.

2

Pan, Z. W.; Mahurin, S. M.; Dai, S.; Lowndes, D. H. Nanowire array gratings with ZnO combs. Nano Lett. 2005, 5, 723–727.

3

Yin, L. W.; Bando, Y.; Zhu, Y. C.; Li, M. S.; Li, Y. B.; Golberg, D. Growth and field emission of hierarchical single-crystalline wurtzite AlN nanoarchitectures. Adv. Mater. 2005, 17, 110–114.

4

Nehl, C. L.; Liao, H. W.; Hafner, J. H. Optical properties of star-shaped gold nanoparticles. Nano Lett. 2006, 6, 683–688.

5

Cao, M. H.; Liu, T. F.; Gao, S.; Sun, G. B.; Wu, X. L.; Hu, C. W.; Wang, Z. L. Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed. 2005, 44, 4197–4201.

6

Huang, H. B.; Yang, S. G.; Gong, J. F.; Liu, H. W.; Duan, J. H.; Zhao, X. N.; Zhang, R.; Liu, Y. L.; Liu, Y. C. Controllable assembly of aligned ZnO nanowires/belts arrays. J. Phys. Chem. B 2005, 109, 20746–20750.

7

Parfenov, A.; Gryczynski, I.; Malicka, J.; Geddes, C. D.; Lakowicz, J. R. Enhanced fluorescence from fluorophores on fractal silver surfaces. J. Phys. Chem. B 2003, 107, 8829–8833.

8

Wang, Z. L.; Pan, Z. W. Junctions and networks of SnO nanoribbons. Adv. Mater. 2002, 14, 1029–1032.

DOI
9

Dick, K. A.; Deppert, K.; Larsson, M. W.; Martensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched "nanotrees" by controlled seeding of multiple branching events. Nat. Mater. 2004, 3, 380–384.

10

Wang, D.; Qian, F.; Yang, C.; Zhong, Z. H.; Lieber, C. M. Rational growth of branched and hyperbranched nanowire structures. Nano Lett. 2004, 4, 871–874.

11

Ge, J. P.; Li, Y. D. Selective atmospheric pressure chemical vapor deposition route to CdS arrays, nanowires, and nanocombs. Adv. Funct. Mater. 2004, 14, 157–162.

12

May, S. J.; Zheng, J. G.; Wessels, B. W.; Lauhon, L. J. Dendritic nanowire growth mediated by a self-assembled catalyst. Adv. Mater. 2005, 17, 598–602.

13

Lan, Z. H.; Liang, C. H.; Hsu, C. W.; Wu, C. T.; Lin, H. M.; Dhara, S.; Chen, K. H.; Chen, L. C.; Chen, C. C. Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrates. Adv. Funct. Mater. 2004, 14, 233–237.

14

Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

15

Wang, Z. L.; Kong, X. Y.; Ding, Y.; Gao, P. X.; Hughes, W. L.; Yang, R. S.; Zhang, Y. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv. Funct. Mater. 2004, 14, 943–956.

16

Park, J. H.; Choi, H. J.; Choi, Y. J.; Sohn, S. H.; Park, J. G. Ultrawide ZnO nanosheets. J. Mater. Chem. 2004, 14, 35–36.

17

Zhang, Y. H.; Liu, J.; Liu, T.; You, L. P.; Li, X. G. Supersaturation-controlled synthesis of two types of single-sided ZnO comb-like nanostructures by thermal evaporation at low temperature. J. Cryst. Growth 2005, 285, 541–548.

18

Peng, Q.; Dong, Y. J.; Deng, Z. X.; Li, Y. D. Selective synthesis and characterization of CdSe nanorods and fractal nanocrystals. Inorg. Chem. 2002, 41, 5249–5254.

19

Kuang, D. B.; Xu, A. W.; Fang, Y. P.; Liu, H. Q.; Frommen, C.; Fenske, D. Surfactant-assisted growth of novel PbS dendritic nanostructures via facile hydrothermal process. Adv. Mater. 2003, 15, 1747–1750.

20

Wang, D.; Yu, D. B.; Shao, M. W.; Liu, X. M.; Yu, W. C.; Qian, Y. T. Dendritic growth of PbS crystals with different morphologies. J. Cryst. Growth 2003, 257, 384–389.

21

Cheng, Y.; Wang, Y. S.; Chen, D.; Bao, F. Evolution of single crystalline dendrites from nanoparticles through oriented attachment. J. Phys. Chem. B 2005, 109, 794–798.

22

Qin, A. M.; Fang, Y. P.; Zhao, W. X.; Liu, H. Q.; Su, C. Y. Directionally dendritic growth of metal chalcogenide crystals via mild template-free solvothermal method. J. Cryst. Growth 2005, 283, 230–241.

23

Zhu, J. P.; Yu, S. H.; He, Z. B.; Jiang, J.; Chen, K.; Zhou, X. Y. Complex PbTe hopper (skeletal) crystals with high hierarchy. Chem. Commun. 2005, 5802–5804.

24

Kanaras, A. G.; Sonnichsen, C.; Liu, H. T.; Alivisatos, A. P. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 2005, 5, 2164–2167.

25

Naravanaswamy, A.; Xu, H. F.; Pradhan, N.; Peng, X. G. Crystalline nanoflowers with different chemical compositions and physical properties grown by limited ligand protection. Angew. Chem. Int. Ed. 2006, 45, 5361–5364.

26

Xiao, J. P.; Xie, Y.; Tang, R.; Chen, M.; Tian, X. B. Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 2001, 13, 1887–1891.

DOI
27

Ni, Y. H.; Liu, H. J.; Wang, F.; Liang, Y. Y.; Hong, J. M.; Ma, X.; Xu, Z. Shape controllable preparation of PbS crystals by a simple aqueous phase route. Cryst. Growth Des. 2004, 4, 759–764.

28

Cölfen, H.; Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 2003, 42, 2350–2365.

29

Shi, H. T.; Qi, L. M.; Ma, J. M.; Cheng, H. M.; Zhu, B. Y. Synthesis of hierarchical superstructures consisting of BaCrO4 nanobelts in catanionic reverse micelles. Adv. Mater. 2003, 15, 1647–1651.

30

Liu, B.; Yu, S. H.; Li, L. J.; Zhang, Q.; Zhang, F.; Jiang, K. Morphology control of stolzite microcrystals with high hierarchy in solution. Angew. Chem. Int. Ed. 2004, 43, 4745–4750.

31

Zhang, X.; Xie, Y.; Xu, F.; Tian, X. B. Growth of BaWO4 fishbone-like nanostructures in w/o microemulsion. J. Colloid Interface Sci. 2004, 274, 118–121.

32

Sounart, T. L.; Liu, J.; Voigt, J. A.; Hsu, J. W. P.; Spoerke, E. D.; Tian, Z.; Jiang, Y. B. Sequential nucleation and growth of complex nanostructured films. Adv. Funct. Mater. 2006, 16, 335–344.

33

Zhang, T. R.; Dong, W. J.; Keeter-Brewer, M.; Konar, S.; Njabon, R. N.; Tian, Z. R. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites. J. Am. Chem. Soc. 2006, 128, 10960–10968.

34

Sanchez, C.; Arribart, H.; Guille, M. M. G. Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nat. Mater. 2005, 4, 277–288.

35

Schwenzer, B.; Roth, K. M.; Gomm, J. R.; Murr, M.; Morse, D. E. Kinetically controlled vapor-diffusion synthesis of novel nanostructured metal hydroxide and phosphate films using no organic reagents. J. Mater. Chem. 2006, 16, 401–407.

36

Kisailus, D.; Schwenzer, B.; Gomm, J.; Weaver, J. C.; Morse, D. E. Kinetically controlled catalytic formation of zinc oxide thin films at low temperature. J. Am. Chem. Soc. 2006, 128, 10276–10280.

37

Brutchey, R. L.; Morse, D. E. Template-free, low-temperature synthesis of crystalline barium titanate nanoparticles under bio-inspired conditions. Angew. Chem. Int. Ed. 2006, 45, 6564–6566.

38

Vesselinov, I. Dendritic growth of lead molybdate in aqueous solutions. J. Cryst. Growth 1996, 167, 725–728.

39

Yang, D.; Qi, L. M.; Ma, J. M. Well-defined star-shaped calcite crystals formed in agarose gels. Chem. Commun. 2003, 1180–1181.

40

Oaki, Y.; Imai, H. Experimental demonstration for the morphological evolution of crystals grown in gel media. Cryst. Growth Des. 2003, 3, 711–716.

41

Zeng, H. C.; Chong, T. C.; Lim, L. C.; Kumagai, H.; Hirano, M. Pseudo-dendritic growth in lead molybdate single crystal by Czochralski technique. J. Cryst. Growth 1994, 140, 148–156.

42

Zhang, H.; Davison, W. Diffusional characteristics of hydrogels used in DGT and DET techniques. Anal. Chim. Acta 1999, 398, 329–340.

43

Wu, Z. C.; Pan, C.; Yao, Z. Y.; Zhao, Q. R.; Xie, Y. Large-scale synthesis of single-crystal double-fold snowflake Cu2S dendrites. Cryst. Growth Des. 2006, 6, 1717–1719.

44

Hoyt, J. J.; Asta, M.; Karma, A. Atomistic and continuum modeling of dendritic solidification. Mat. Sci. Eng. R. 2003, 41, 121–163.

45

Tian, Z. R. R.; Liu, J.; Voigt, J. A.; Xu, H. F.; McDermot, M. J. Dendritic growth of cubically ordered nanoporous materials through self-assembly. Nano Lett. 2003, 3, 89–92.

46

Wen, X.; Xie, Y. T.; Mak, W. M. C.; Cheung, K. Y.; Li, X. Y.; Renneberg, R.; Yang, S. Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications. Langmuir 2006, 22, 4836–4842.

47

Cademartiri, L.; Bertolotti, J.; Sapienza, R.; Wiersma, D. S.; von Freymann, G.; Ozin, G. A. Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals. J. Phys. Chem. B 2006, 110, 671–673.

48

Meakin, P. Fractal, Scaling and Growth Far from Equilibrium; Cambridge University Press: New York, 1998.

49

Xie, D. T.; Wu, J. G.; Xu, G. X.; Qi, O. Y.; Soloway, R. D.; Hu, T. D. Three-dimensional periodic and fractal precipitation in metal ion-deoxycholate system: A model for gallstone formation. J. Phys. Chem. B 1999, 103, 8602–8605.

50

Grier, D. G.; Allen, K.; Goldman, R. S.; Sander, L. M.; Clarke, R. Superlattices and long-range order in electrodeposited dendrites. Phys. Rev. Lett. 1990, 64, 2152–2155.

File
nr-1-3-213_ESM.pdf (666.6 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 18 April 2008
Revised: 11 July 2008
Accepted: 11 July 2008
Published: 01 March 2008
Issue date: March 2008

Copyright

© Tsinghua Press and Springer-Verlag 2008

Acknowledgements

Acknowledgements

This work was supported by NSFC (Project 90406018) and the Ministry of Science and Technology (MOST) of China (Project 2007CB936202).

Rights and permissions

This article is published with open access at Springerlink.com

Return